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Two-Layer Feedforward Neural Network

Z=nh(%,U,V)
é é é 2 = g(be) Z=g(b)

/ /" be = viko + D7 _ Ver Yk b
'\@ w=fa)  7=f3)
3

/ !/\ ak = Uko + Z, 1 UkjXj

X is the input vector
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Neural Network = Universal Approximator

Assume. . .
@ Linear Output Nodes: g(b) = b
o Smoothly Nonlinear Hidden Nodes: f'(a) = % finite

@ Smooth Target Function: Z = h(X, U, V') approximates
¢ = h*(X) € H, where H is some class of sufficiently smooth
functions of X (functions whose Fourier transform has a first

moment less than some finite number C)
@ There are g hidden nodes, y, 1 < k<gq

@ The input vectors are distributed with some probability density
function, p(X), over which we can compute expected values.

Then (Barron, 1993) showed that. ..

1
inE [h(%,U,V)—h(X)?] <0l =
5, g E [ U - ] <o { |
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Neural Network Problems: Outline of Remainder of this Talk

@ Knowledge-Based Design. Given U, V, f, g, what kind of
function is h(X, U, V)? Can we draw Z as a function of X?
Can we heuristically choose U and V so that Z looks kinda
like ¢7

@ Error Metric. In what way should Z = h(X) be “similar to”
¢ = h*(xX)?

© Local Optimization: Gradient Descent with
Back-Propagation. Given an initial U, V, how do | find U,
V' that more closely approximate (?

@ Global Optimization: Simulated Annealing. How do | find
the globally optimum values of U and V7
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Synapse, First Layer: ay = uxo + 21221 UkjX;

First Layer, kth Synapse, ak(x1 ,x2)
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First Layer, kth Synapse, ak(x1,0)
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Axon, First Layer: y

First Layer, kth Axon, yk(x1 ,x2)
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Synapse, Second Layer: by = vy + Ei:l Vok Vi

Second Layer, Ith Synapse, b(x1 ,x2)
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Axon, Second Layer: z, = sign(by)

Second Layer, Ith Axon, z(x1 ,x2)
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Second Layer, Ith Axon, z(x1,0)

zl(x1 ,0)
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Step and Logistic nonlinearities Signum and Tanh nonlinearities

Unit Step: g(b)=u(b) Signum: g(b)=sign(b)
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Logistic: g(b)=1/(1+e™) Tanh: g(b)=(e>-e®)/(e"+e™®)
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“Linear Nonlinearity” and RelLU Max and Softmax

Linear: g(b)=b Max:
3
2 1 by = maxm bm
1 Zy — g
_ 0 otherwise
S
o
K Softmax:
2
-C_’>4 ) 8 > 4 . eb[
— ¢ = b
, ReLU: g(b)=max(0,b) Zm ebm
2
. 1
E]
0
-
% 2 0 2 4
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Error Metric: How should h(X) be “similar to” h*(X)?

Linear output nodes:

Minimum Mean Squared Error (MMSE)

iy
U*, V* = inE, = in =" |G — Z(x)|?
, arg min E,, argmlnni_1 I (xi)]

—

If the training samples (X;, (;) are i.i.d., then

E.=F [|5— 2\2]

E~o is minimized by
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Error Metric: How should h(X) be “similar to” h*(X)?

Logistic output nodes:

Binary target vector

Suppose
¢ = 1 with probability Py(X)
©7 1 0 with probability 1 — Py(X)

and suppose 0 < z, < 1, e.g., logistic output nodes.

MMSE Solution: z, = Pr{{, = 1|X}

E[CIX] = 1-Pu(X)+0-(1— PyX))
= Py(x)

So the MMSE neural network solution is

zp mmse(X) = P(X)
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Error Metric: How should h(X) be “similar to” h*(X)?

Softmax output nodes:

One-Hot Vector, MKLD Solution: z, = Pr{¢, = 1|X}

@ Suppose C_; is a “one hot" vector, i.e., only one element is
“hot” (Cy(iy,i = 1), all others are “cold” ((mi = 0, m # £(i)).

e MMSE will approach the solution z; = Pr{(, = 1|x}, but
there's no guarantee that it's a correctly normalized pmf
(> zy = 1) until it has fully converged.

e MKLD also approaches z; = Pr{(; = 1|X}, and guarantees
that >z, = 1. MKLD is also more computationally efficient,
if ¢ is a one-hot vector.

MKLD = Minimum Kullback-Leibler Distortion

D, = %Z > Gilog (Z:) = —% > " log zyy,
i=1

i=1 ¢=1




Metric
oooe

Error Metrics Summarized

@ Use MSE to achieve Z = E [ﬂ)‘(] That's almost always what
you want.

o If fis a one-hot vector, then use KLD (with a softmax
nonlinearity on the output nodes) to guarantee that Z is a
properly normalized probability mass function, and for better
computational efficiency.

@ If {; is binary, but not necessarily one-hot, then use MSE
(with a logistic nonlinearity) to achieve z = Pr{(, = 1|X}.

o If ¢y is signed binary (¢, € {—1,+1}, then use MSE (with a
tanh nonlinearity) to achieve z; = E [(y|X].

@ After you're done training, you can make your cell phone app
more efficient by throwing away the uncertainty:

o Replace softmax output nodes with max
e Replace logistic output nodes with unit-step
o Replace tanh output nodes with signum
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Gradient Descent = Local Optimization

Neural Net Error Surface (Schematic)
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Gradient Descent = Local Optimization

Given an initial U, V, find U, V with lower error.
u u n—aEn
ki — ki —
Y Y 8Ukj
N OE,
ek = Vik — 778ng

o If i too large, gradient descent won't converge. If too small,
convergence is slow. Usually we pick n =~ 0.001 and cross our
fingers.

@ Second-order methods like L-BFGS choose an optimal 7 at
each step, so they're MUCH faster.
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Computing the Gradient

OK, let's compute the gradient of E,, with respect to the V
matrix. Remember that V enters the neural net computation as
bei = 3, Vekyki, and then z depends on b somehow. So. ..

OE,  ~=~ (OE,\ [ Oby
ovek ;(31%') <3Vek>

= Z €LiYki

i=1

where the last line only works if we define ¢4; in a useful way:

Back-Propagated Error

_0E, TN
- an, - n(zél Cél)g (bél)

€ei

where g'(b) = 3.
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Z= h(%,U,V)
é é zp = g(by) zzg(g)

be = vio + D p_1 Ver Yk b=V
f(

<u

QL]
~

vk = f(ax) y
U

X1

_ P =
ak = Uko + D ;g UkiXj 3

X is the input vector

Back-Propagating to the First Layer
OE, ", (OE, Oay -

_ — S kiXii
6ukj Z (6%) (Gukj> ; ki

i=1

r

= enivenf'(aki)
=1

_ 0E,
 Day

where. .. g




Gradient
[elelete] Yo}

[ The Back-Propagation Algorithm

V=V-9VvE, U=U-19VyE,
VvE,=EY', VyE,=DXT

Y =1, 00,  X=[X,...,%)]

E=[a,....&l, D=[0....0
2

e = Zo'(b; St 5. — £(3: ="
G=gb)o(2-G), 5=r@E)ovTa

...where ® means element-wise multiplication of two vectors;
g'(b) and f'(3) are element-wise derivatives of the g(-) and f(-)
nonlinearities.
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Derivatives of the Nonlinearities

Logistic
Logistic: g(b)=1/(1+€™) Tanh: g(b)=(e®-e®)/(e°+e™®) . ReLU: g(b)=max(0,b)
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Simulated Annealing: How can we find the globally

optimum U, V?

o Gradient descent finds a local optimum. The U, v you end up
with depends on the U, V you started with.

@ How can you find the global optimum of a non-convex error
function?

@ The answer: Add randomness to the search, in such a way
that. ..

P(reach global optimum) =% 1



@ Take a random step. If it goes downhill, do it.

Neural Net Error Surface (Schematic)
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@ Take a random step. If it goes downhill, do it.
o If it goes uphill, SOMETIMES do it.

Neural Net Error Surface (Schematic)
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o Take a random step. If it goes downhill, do it.
o If it goes uphill, SOMETIMES do it.
@ Uphill steps become less probable as t — oo

Neural Net Error Surface (Schematic)
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Simulated Annealing: Algorithm

FORt=1TO oo, DO
© Set U = U+ RANDOM

@ If your random step caused the error to decrease
(En(U) < E5(U)), then set U = U
(prefer to go downhill)
Q Else set U = U with probability P
(...but sometimes go uphill!)
@ P = exp(—(En(U) — E,(U))/Temperature)
(Small steps uphill are more probable than big steps
uphill.)
® Temperature = T/ log(t + 1)
(Uphill steps become less probable as t — c0.)

© Whenever you reach a local optimum (U is better than both
the preceding and following time steps), check to see if it's
better than all preceding local optima; if so, remember it.
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Convergence Properties of Simulated Annealing

(Hajek, 1985) proved that, if we start out in a “valley” that is
separated from the global optimum by a “ridge” of height T,,ax,
and if the temperature at time t is T(t), then simulated annealing
converges in probability to the global optimum if

Z exp (— Tmax/ T(t)) = +o0
t=1

For example, this condition is satisfied if

T(t) = Tmax/log(t + 1)
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ab Review
re's the datas

WS15 ANN Lab, Reference Labels, ER=0
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WS15 ANN Lab, Reference Labels, ER= 0
— — - —

Second feature dimension
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You'll have to plot it many times, so | recommend writing a plot

function

function ER = nnplot(X,Z,ZETA,STRING,fignum)
[p,n]l=size(X);

ER=sum (ZETA. *Z<0) /n;

figure(fignum) ;

plot (X(1,Z<0),X(2,Z<0),’r.’,X(1,2>0),X(2,Z>0),’b.’);
title(sprintf(*WS15 ANN Lab, %s, ER=%g’,STRING,ER));

e
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WS15 ANN Lab, Reference Labels, ER= 0

Second feature dimension
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Knowledge-based design: set each row of U to be a line segment,

ug + u1xy + upxxo = 0, on the decision boundary.
ug is an arbitrary scale factor; ug = —20 makes the tanh work well.

[x1,x2]=ginput(2);

u0=-20; % Arbitrary scale factor
u = -inv([x1,x2])*[u0;u0];

U(l,:) = [uo,u(l),ul2)];
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WS15 ANN Lab, Reference Labels, ER=0
AR

Second feature dimension

S

Check your math by plotting xo = — -2 — =

2

nnplot (X,ZETA,ZETA, ’Reference Labels’,1);
hold on;

plot ([0,1],-(u0/u(2))+[0,-u(1)/u(2)],’g-");
hold off;
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WS15 ANN Lab, Ref

¥

°

0.2

Second feature dimension

3

07
First feature dimension

Here are 3 such segments, mapping out the lowest curve:

for m=1:3,
plot ([0 1],-U(m,1)/U(m,3)+[0,-U(m,2)/U(m,3)]);
end
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WS15 ANN Lab, Reference Label

(1) Reflect through xo = —0.75, and (2) Shift upward:

Ufoo = [U; U(:,1)-1.5*%U0(:,3),U0(:,2),-U(:,3)];
Ubar = [Ufoo; Ufoo-[0.5%Ufoo(:,3),zeros(6,2)]1];
U = [Ubar; Ubar-[Ubar(:,3),zeros(12,2)1];
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WS15 ANN Lab, Knowledge-Based Classifier, ER=0.14
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nnclassify.m: Error Rate = 14%
function [Z,Y]=nnclassify(X,U,V)

Y = tanh(U*[ones(1,n); X]1);
Z = tanh(Vx[ones(1,n); Y]);
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WS15 ANN Lab, Descent from KB Init, ER=0.028
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nnbackprop.m: Error Rate = 2.8%

function [EPSILON,DELTA]=nnbackprop(X,Y,Z,ZETA,V)
EPSILON = 2% (1-Z."2) .x (Z-ZETA);
DELTA = (1-Y."2) .*x (V(:,2:(q+1))’> * EPSILON);
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WS15 ANN Lab, Descent from Rand Init, ER=0.28
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But with random initialization: Error Rate = 28%

Urand = [0.02+*randn(q,p+1)];

Vrand = [0.02%randn(r,q+1)];

[Uc,Vc] = nndescent(X,ZETA,Urand,Vrand,0.1,1000);
[Zc,Yc] = nnclassify(X,Uc,Vc);
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WS15 ANN Lab, Simulated Annealing, ER=0.051
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nnanneal.m: Error Rate = 5.1%

function [Es,Us,Vs] = nnanneal (X,ZETA,U0,VO,ETA,T)
for t=1:T,

U1=UO+randn(q,p+1); V1=VO+randn(r,q+1);

ER1 = sum(nnclassify(X,U1,V1).*ZETA<O)/n;

if ER1 < ERO,
U0=U1;V0=V1;ERO=ER1;
else

P = exp(-(ER1-ERO)*log(t+1)/ridge);
if rand() < P,
U0=U1;V0=V1;ERO=ER1;
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Scatter plot of the hard2d dataset
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Here's one that Amit tried based on my mistaken early draft of the

instructions for this lab. Error Rate: 28%
temperature=ridge/sqrt(t);

instead of the correct form,

temperature=ridge/log(t+1);
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Scatter plot of the hard2d dataset
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...and Amit solved it using Geometric Annealing. Error Rate:

0.67%

@ Smaller random steps: AU ~ N (0, 1e — 4) instead of
N(0,1), and only one weight at a time instead of all weights
at once

@ Geometric annealing: temperature cools geometrically
(T(t) = aT(t — 1)) rather than logarithmically
T(t)=c/log(t+1)
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Simulated Annealing: More Results

Algorithm cora t Error Rate
Hajek Cooling 1 52356 | 5.1%

(T =c/log(t+1)) | 107* 1800 | 0.70%
Geometric Annealing | 0.7 500 0.43%
T(t)=aT(t—1) 0.8 500 0.40%

0.9 500 0.80%
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More Comments on Simulated Annealing

@ Gaussian random walk results in very large weights

e | fought this using the mod operator, to map weights back to
the range [—25, 25]

e | suspect it matters, but I'm not sure

@ Every time you reach a new low error,

e Store it, and its associated weights, in case you never find it
again, and

e Print it on the screen (using disp and sprintf) so you can
see how your code is doing

@ Simulated annealing can take a really long time.
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Real-World Randomness: Stochastic Gradient Descent

(SGD)

@ SGD is the following algorithm. For t=1:T,
@ Randomly choose a small subset of your training data (a
minibatch: strictly speaking, SGD is minibatch size of m =1,
but practical minibatches are typically m ~ 100)
@ Perform a complete backprop iteration using the minibatch.
@ Advantage of SGD over Simulated Annealing: computational
complexity
o Instead of introducing randomness with a random weight
update (O {n}), we introduce randomness by randomly
sampling the dataset (O {m})
e Matters a lot when n is large
o Disadvantage of SGD over Simulated Annealing: It’s not
theoretically proven to converge to a global optimum
e ...but it works in practice, if training dataset is big enough.
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Conclusions

@ Back-prop.
e You need to know how to do it.
@ ...but back-prop is only useful if you start from a good initial
set of weights, or if you have good randomness

o Knowledge-based initialization
e Sometimes, it helps if you understand what you're doing.
@ Stochastic search.

e Simulated annealing: guaranteed performance, high complexity.

e Stochastic gradient descent: not guaranteed, but low
complexity. Incidentally, | haven't tried it yet on hard2d.txt;
if you try it, please tell me how it works.

Local optimization makes a good idea better.
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