ECE417: Neural Networks

Mark Hasegawa-Johnson

University of lllinois

2015/04/19

I

1867

Intro

Outline

@ Intro

Intro

Two-Layer Feedforward Neural Network

Z=nh(%,U,V)
é é é 2 = g(be) Z=g(b)

/ /" be = viko + D7 _ Ver Yk b
'\@ w=fa) 7=f3)
3

/ !/\ ak = Uko + Z, 1 UkjXj

X is the input vector

Intro
oeo

Neural Network = Universal Approximator

Assume. . .
@ Linear Output Nodes: g(b) = b
o Smoothly Nonlinear Hidden Nodes: f'(a) = % finite

@ Smooth Target Function: Z = h(X, U, V') approximates
¢ = h*(X) € H, where H is some class of sufficiently smooth
functions of X (functions whose Fourier transform has a first

moment less than some finite number C)
@ There are g hidden nodes, y, 1 < k<gq

@ The input vectors are distributed with some probability density
function, p(X), over which we can compute expected values.

Then (Barron, 1993) showed that. ..

1
inE [h(%,U,V)—h(X)?] <0l =
5, g E [U -] <o { |

Intro
ooe

Neural Network Problems: Outline of Remainder of this Talk

@ Knowledge-Based Design. Given U, V, f, g, what kind of
function is h(X, U, V)? Can we draw Z as a function of X?
Can we heuristically choose U and V so that Z looks kinda
like ¢7

@ Error Metric. In what way should Z = h(X) be “similar to”
¢ = h*(xX)?

© Local Optimization: Gradient Descent with
Back-Propagation. Given an initial U, V, how do | find U,
V' that more closely approximate (?

@ Global Optimization: Simulated Annealing. How do | find
the globally optimum values of U and V7

Design
QOutline

© Knowledge-Based Design

Design
©00000

Synapse, First Layer: ay = uxo + 21221 UkjX;

First Layer, kth Synapse, ak(x1 ,x2)

-1 -0.8 -0.6 -0.4 -0.2 0 02 0.4 06 0.8 1

1
First Layer, kth Synapse, ak(x1,0)

1 -0.8 -0.6 -0.4 -0.2 0 02 0.4 06 0.8 1

Design
[e] YeTolele}

Axon, First Layer: y

First Layer, kth Axon, yk(x1 ,x2)

-1 -0.8 -0.6 -0.4 -0.2 0 02 0.4 06 0.8 1

%

First Layer, kth Axon, yk(x1,0)
2 T T T

-
T
L

%,%,0
o

L
I

Design

00e000

Synapse, Second Layer: by = vy + Ei:l Vok Vi

Second Layer, Ith Synapse, b(x1 ,x2)

0.5
1
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
%
Second Layer, Ith Synapse, b(x1,0)
2 T T T T
i J
Y
< 0
)
AF 4
_2 L L L L L L L L L
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

%

Design

[eJele] Jele}

Axon, Second Layer: z, = sign(by)

Second Layer, Ith Axon, z(x1 ,x2)

-1 -0.8 -0.6 -0.4 -0.2 0 02 0.4 06 0.8 1

%

Second Layer, Ith Axon, z(x1,0)

zl(x1 ,0)
o N

Design
00000

Step and Logistic nonlinearities Signum and Tanh nonlinearities

Unit Step: g(b)=u(b) Signum: g(b)=sign(b)
15 15
1 1
0.5 0.5
S 9 g o
o o
05 -0.5
1 1
5 2 0 2 4 5 2 0 2 4
b b
Logistic: g(b)=1/(1+e™) Tanh: g(b)=(e>-e®)/(e"+e™®)
15 1.5
1 1
0.5 / 0.5
s o0 3 0
0.5 05
1 1
5 2 0 2 4 A8, 2 0 2 4
b b

Design
[eIeTeTote] }

“Linear Nonlinearity” and RelLU Max and Softmax

Linear: g(b)=b Max:
3
2 1 by = maxm bm
1 Zy — g
_ 0 otherwise
S
o
K Softmax:
2
-C_’>4) 8 > 4 . eb[
— ¢ = b
, ReLU: g(b)=max(0,b) Zm ebm
2
. 1
E]
0
-
% 2 0 2 4
b

Metric

Outline

© Error Metric

Metric
[Jelele)

Error Metric: How should h(X) be “similar to” h*(X)?

Linear output nodes:

Minimum Mean Squared Error (MMSE)

iy
U*, V* = inE, = in =" |G — Z(x)|?
, arg min E,, argmlnni_1 I (xi)]

—

If the training samples (X;, (;) are i.i.d., then

E.=F [|5— 2\2]

E~o is minimized by

Metric
0®00

Error Metric: How should h(X) be “similar to” h*(X)?

Logistic output nodes:

Binary target vector

Suppose
¢ = 1 with probability Py(X)
©7 1 0 with probability 1 — Py(X)

and suppose 0 < z, < 1, e.g., logistic output nodes.

MMSE Solution: z, = Pr{{, = 1|X}

E[CIX] = 1-Pu(X)+0-(1— PyX))
= Py(x)

So the MMSE neural network solution is

zp mmse(X) = P(X)

Metric
coeo

Error Metric: How should h(X) be “similar to” h*(X)?

Softmax output nodes:

One-Hot Vector, MKLD Solution: z, = Pr{¢, = 1|X}

@ Suppose C_; is a “one hot" vector, i.e., only one element is
“hot” (Cy(iy,i = 1), all others are “cold” ((mi = 0, m # £(i)).

e MMSE will approach the solution z; = Pr{(, = 1|x}, but
there's no guarantee that it's a correctly normalized pmf
(> zy = 1) until it has fully converged.

e MKLD also approaches z; = Pr{(; = 1|X}, and guarantees
that >z, = 1. MKLD is also more computationally efficient,
if ¢ is a one-hot vector.

MKLD = Minimum Kullback-Leibler Distortion

D, = %Z > Gilog (Z:) = —% > " log zyy,
i=1

i=1 ¢=1

Metric
oooe

Error Metrics Summarized

@ Use MSE to achieve Z = E [ﬂ)‘(] That's almost always what
you want.

o If fis a one-hot vector, then use KLD (with a softmax
nonlinearity on the output nodes) to guarantee that Z is a
properly normalized probability mass function, and for better
computational efficiency.

@ If {; is binary, but not necessarily one-hot, then use MSE
(with a logistic nonlinearity) to achieve z = Pr{(, = 1|X}.

o If ¢y is signed binary (¢, € {—1,+1}, then use MSE (with a
tanh nonlinearity) to achieve z; = E [(y|X].

@ After you're done training, you can make your cell phone app
more efficient by throwing away the uncertainty:

o Replace softmax output nodes with max
e Replace logistic output nodes with unit-step
o Replace tanh output nodes with signum

Gradient

Outline

@ Gradient Descent

Gradient
®00000

Gradient Descent = Local Optimization

Neural Net Error Surface (Schematic)
3 T T T
2 [-
> 1p 1
2
o
g o
]
D
£
£
©
e 1 1
20 4
-3 L L L L L
0 05 1 15 2 25 3
Network Weight Uy

Gradient Descent = Local Optimization

Given an initial U, V, find U, V with lower error.
u u n—aEn
ki — ki —
Y Y 8Ukj
N OE,
ek = Vik — 778ng

o If i too large, gradient descent won't converge. If too small,
convergence is slow. Usually we pick n =~ 0.001 and cross our
fingers.

@ Second-order methods like L-BFGS choose an optimal 7 at
each step, so they're MUCH faster.

Gradient
00000

Computing the Gradient

OK, let's compute the gradient of E,, with respect to the V
matrix. Remember that V enters the neural net computation as
bei = 3, Vekyki, and then z depends on b somehow. So. ..

OE, ~=~ (OE,\ [Oby
ovek ;(31%') <3Vek>

= Z €LiYki

i=1

where the last line only works if we define ¢4; in a useful way:

Back-Propagated Error

_0E, TN
- an, - n(zél Cél)g (bél)

€ei

where g'(b) = 3.

Gradient
000e00

Z= h(%,U,V)
é é zp = g(by) zzg(g)

be = vio + D p_1 Ver Yk b=V
f(

<u

QL]
~

vk = f(ax) y
U

X1

_ P =
ak = Uko + D ;g UkiXj 3

X is the input vector

Back-Propagating to the First Layer
OE, ", (OE, Oay -

_ — S kiXii
6ukj Z (6%) (Gukj> ; ki

i=1

r

= enivenf'(aki)
=1

_ 0E,
 Day

where. .. g

Gradient
[elelete] Yo}

[The Back-Propagation Algorithm

V=V-9VvE, U=U-19VyE,
VvE,=EY', VyE,=DXT

Y =1, 00, X=[X,...,%)]

E=[a,....&l, D=[0....0
2

e = Zo'(b; St 5. — £(3: ="
G=gb)o(2-G), 5=r@E)ovTa

...where ® means element-wise multiplication of two vectors;
g'(b) and f'(3) are element-wise derivatives of the g(-) and f(-)
nonlinearities.

Gradient
oooooe

Derivatives of the Nonlinearities

Logistic
Logistic: g(b)=1/(1+€™) Tanh: g(b)=(e®-e®)/(e°+e™®) . ReLU: g(b)=max(0,b)
1.5
1 1 2
05 / 08 1
-0.5 -0.5
R 4 -1
1 2 0 2 4 1Y 2 0 2 4 2 2) 2 4
b b b
, 5Logistic Derivative: g'(b)=g(b)(1-g(b)) Tanh Derivative: g'(b)=(1-g(b)) s Unit Step: g(b)=u(b)
1.5
1 1 1
05 05 A 05
s —_— T 5 5
s 0 % 0 g 0
-0.5 -0.5! -0.5.
1 -1 1
8 2 0 2 4 1'§4 2 0 2 4 18, 2 0 2 4
b b b

Annealing

Outline

© Simulated Annealing

Annealing
[JeleleTolo)

Simulated Annealing: How can we find the globally

optimum U, V?

o Gradient descent finds a local optimum. The U, v you end up
with depends on the U, V you started with.

@ How can you find the global optimum of a non-convex error
function?

@ The answer: Add randomness to the search, in such a way
that. ..

P(reach global optimum) =% 1

@ Take a random step. If it goes downhill, do it.

Neural Net Error Surface (Schematic)

3 T T T
2F il
S 1 .
2
=
g g
w
D
£
£
©
= -1r]
2F 4
_3 L L L L L
0 05 1 15 2 25 3

Network Weight Uy

Annealing
00®000

@ Take a random step. If it goes downhill, do it.
o If it goes uphill, SOMETIMES do it.

Neural Net Error Surface (Schematic)

3 T T T
2+ -
> 1p 1
2
=
S o
L
j=2
£
£
®©
1T 1
20 i
-3 1 1 1 1 1
0 0.5 1 1.5 2 25 3

Network Weight Uy

Annealing

000e00

o Take a random step. If it goes downhill, do it.
o If it goes uphill, SOMETIMES do it.
@ Uphill steps become less probable as t — oo

Neural Net Error Surface (Schematic)

3 T T T
2+ -
> 1p 1
2
=
S o
L
j=2
£
£
®©
1T 1
20 i
-3 1 1 1 1 1
0 0.5 1 1.5 2 25 3

Neatavnrk \W einaht 11

Simulated Annealing: Algorithm

FORt=1TO oo, DO
© Set U = U+ RANDOM

@ If your random step caused the error to decrease
(En(U) < E5(U)), then set U = U
(prefer to go downhill)
Q Else set U = U with probability P
(...but sometimes go uphill!)
@ P = exp(—(En(U) — E,(U))/Temperature)
(Small steps uphill are more probable than big steps
uphill.)
® Temperature = T/ log(t + 1)
(Uphill steps become less probable as t — c0.)

© Whenever you reach a local optimum (U is better than both
the preceding and following time steps), check to see if it's
better than all preceding local optima; if so, remember it.

Annealing
00000e

Convergence Properties of Simulated Annealing

(Hajek, 1985) proved that, if we start out in a “valley” that is
separated from the global optimum by a “ridge” of height T,,ax,
and if the temperature at time t is T(t), then simulated annealing
converges in probability to the global optimum if

Z exp (— Tmax/ T(t)) = +o0
t=1

For example, this condition is satisfied if

T(t) = Tmax/log(t + 1)

Lab Review
QOutline

@ Lab Review

ab Review
re's the datas

WS15 ANN Lab, Reference Labels, ER=0
L v S A S o A R S SRS SRR
e T N e
0.8L e 0t ,\ Lo IR R PR RN
S e VA o ‘, LR
R T S A S A SR SR LN
08", et e L ’.’,",:’.3’
S e S e e IRt
P R SRR el e Tt e e R
@ e e e N o
@ B e S R N S
: KA R A
£ 02F % . el ST D e T
=] L T e e el
g ok .. P ‘ ’:’: i .‘Ez,.»..;:. ~; ‘“.‘ “. R
2 S T A S A SN
S 02f LIk DT el
S R FATRAREIN LR T S Sy
S e e Vel)
o I R O S
2] R UM AN PRI S
oo RS S SRR K PR
AP IR R SRS R AR
06y L e T e A
. S “. ~» :” WDt e
‘~.~\::»‘..,~. SEeL L
S0.8F s e] e DD
Do TReliene TUHmL e nes T g
T e T ey T e,
1 PRI PSR RS SRR IR RIS
0 0.2 0.4 0.6
First feature dimension

Lab Review
O®00000000000000

WS15 ANN Lab, Reference Labels, ER= 0
— — - —

Second feature dimension
s & o o
NP

&
>

-0.8[,

0 0.2 0.4 06 08 1
First feature dimension

You'll have to plot it many times, so | recommend writing a plot

function

function ER = nnplot(X,Z,ZETA,STRING,fignum)
[p,n]l=size(X);

ER=sum (ZETA. *Z<0) /n;

figure(fignum) ;

plot (X(1,Z<0),X(2,Z<0),’r.’,X(1,2>0),X(2,Z>0),’b.’);
title(sprintf(*WS15 ANN Lab, %s, ER=%g’,STRING,ER));

e

Lab Review
0O®0000000000000

WS15 ANN Lab, Reference Labels, ER= 0

Second feature dimension

"o 02 04 06 08 1
First feature dimension

Knowledge-based design: set each row of U to be a line segment,

ug + u1xy + upxxo = 0, on the decision boundary.
ug is an arbitrary scale factor; ug = —20 makes the tanh work well.

[x1,x2]=ginput(2);

u0=-20; % Arbitrary scale factor
u = -inv([x1,x2])*[u0;u0];

U(l,:) = [uo,u(l),ul2)];

Lab Review
000O®000000000000

WS15 ANN Lab, Reference Labels, ER=0
AR

Second feature dimension

S

Check your math by plotting xo = — -2 — =

2

nnplot (X,ZETA,ZETA, ’Reference Labels’,1);
hold on;

plot ([0,1],-(u0/u(2))+[0,-u(1)/u(2)],’g-");
hold off;

Lab Review
0000®00000000000

WS15 ANN Lab, Ref

¥

°

0.2

Second feature dimension

3

07
First feature dimension

Here are 3 such segments, mapping out the lowest curve:

for m=1:3,
plot ([0 1],-U(m,1)/U(m,3)+[0,-U(m,2)/U(m,3)]);
end

Lab Review
00000®0000000000

WS15 ANN Lab, Reference Label

(1) Reflect through xo = —0.75, and (2) Shift upward:

Ufoo = [U; U(:,1)-1.5*%U0(:,3),U0(:,2),-U(:,3)];
Ubar = [Ufoo; Ufoo-[0.5%Ufoo(:,3),zeros(6,2)]1];
U = [Ubar; Ubar-[Ubar(:,3),zeros(12,2)1];

Lab Review
000000e000000000

WS15 ANN Lab, Knowledge-Based Classifier, ER=0.14

U A S N S

v

1

Second feature dimension

0 0.2 0.4 0.6 0.8 1
First feature dimension

nnclassify.m: Error Rate = 14%
function [Z,Y]=nnclassify(X,U,V)

Y = tanh(U*[ones(1,n); X]1);
Z = tanh(Vx[ones(1,n); Y]);

Lab Review
0000000®00000000

WS15 ANN Lab, Descent from KB Init, ER=0.028

T T

0.8

0.4+

0.2f

Second feature dimension
o

0 0.2 0.4 0.6 0.8 1
First feature dimension

nnbackprop.m: Error Rate = 2.8%

function [EPSILON,DELTA]=nnbackprop(X,Y,Z,ZETA,V)
EPSILON = 2% (1-Z."2) .x (Z-ZETA);
DELTA = (1-Y."2) .*x (V(:,2:(q+1))’> * EPSILON);

Lab Review
00000000 ®0000000

WS15 ANN Lab, Descent from Rand Init, ER=0.28

»

08

06

04

02

-0.2

Second feature dimension
=)

04

-06

-0.8

First feature dimension

But with random initialization: Error Rate = 28%

Urand = [0.02+*randn(q,p+1)];

Vrand = [0.02%randn(r,q+1)];

[Uc,Vc] = nndescent(X,ZETA,Urand,Vrand,0.1,1000);
[Zc,Yc] = nnclassify(X,Uc,Vc);

Lab Review

000000000 e000000

WS15 ANN Lab, Simulated Annealing, ER=0.051

N ¥ T 4 * XY AR I o LN

AR T T R ey T T T T e T
Les Mt CoL T T R T LT e
RN ST Rt SR SRS PINE S e

& e CrTe e TR i A I

Second feature dimension

0 0.2 0.4 0.6 0.8 1
First feature dimension

Lab Review
0000000000e00000

nnanneal.m: Error Rate = 5.1%

function [Es,Us,Vs] = nnanneal (X,ZETA,U0,VO,ETA,T)
for t=1:T,

U1=UO+randn(q,p+1); V1=VO+randn(r,q+1);

ER1 = sum(nnclassify(X,U1,V1).*ZETA<O)/n;

if ER1 < ERO,
U0=U1;V0=V1;ERO=ER1;
else

P = exp(-(ER1-ERO)*log(t+1)/ridge);
if rand() < P,
U0=U1;V0=V1;ERO=ER1;

Lab Review
0000000000

000

Scatter plot of the hard2d dataset

b3 13 e ¥ s S et
G TR G o S
PRt Tt ~,. .v:m,«w 'eug et 4
e YT A B 4ty
SRR e SR
) { ,s v.&t9‘?§" gt
S N R g
AR S LR '.“’ 2
2[3?:.‘3"‘?’ 2 -"a 3 ":‘~3~"4(33 ».“’,;," ¢
0.1 *
0
0.1
-0,2
-0.3
-0.4
LG
0.6
-0,7
-0.8
G

=:
0 0,050,10,150,20,250,30,350,40,450,50,550,60,650,70,750,80,850,80,95 1

Here's one that Amit tried based on my mistaken early draft of the

instructions for this lab. Error Rate: 28%
temperature=ridge/sqrt(t);

instead of the correct form,

temperature=ridge/log(t+1);

Lab Review
000000000000 e000

Scatter plot of the hard2d dataset

1 reom LR A oy Y ar Dty
e TS A T LR g?kfm&.. a..o:,r‘b e
Y SN b TP o e e P
0.8 Bty uint R .".‘,‘3 R O TR SRR D0 S
orlad e Tt S e s B, e

R P s RS §
02f e, o8 FEO ’*:‘f;::." {{“""3: 2
0.1 W RISt g ey I e A R BT AR A,
PO TR ek ¢.~.,{:,.,}?§‘<§3gg
S BRGR ¥ B A i tn i AT
ERIDE -0 e JFORR o7 S Leb 8 S LR LI T TS L el aeiedl o
R S T e N ey T
0.3 5% CIPR S TR PN PRIl R Lo b ..j;',',
0,4 Rl e ftglr
0.5 e £ AT IR Ry 73, P I I
Bydin e Setied :s.’g R ARCEELOFTRE A AR
BRI Ches SRR L L S
0.8 e :
*0,33‘"

3
3
i3
5
g 3
s
E
S

gLt .
0 0,050,10,150,20,250,30,350,40.450,50,550,60,650.70,750,80.850.90,95 1

...and Amit solved it using Geometric Annealing. Error Rate:

0.67%

@ Smaller random steps: AU ~ N (0, 1e — 4) instead of
N(0,1), and only one weight at a time instead of all weights
at once

@ Geometric annealing: temperature cools geometrically
(T(t) = aT(t — 1)) rather than logarithmically
T(t)=c/log(t+1)

Lab Review
0000000000000 e00

Simulated Annealing: More Results

Algorithm cora t Error Rate
Hajek Cooling 1 52356 | 5.1%

(T =c/log(t+1)) | 107* 1800 | 0.70%
Geometric Annealing | 0.7 500 0.43%
T(t)=aT(t—1) 0.8 500 0.40%

0.9 500 0.80%

Lab Review
0000000000000 e0

More Comments on Simulated Annealing

@ Gaussian random walk results in very large weights

e | fought this using the mod operator, to map weights back to
the range [—25, 25]

e | suspect it matters, but I'm not sure

@ Every time you reach a new low error,

e Store it, and its associated weights, in case you never find it
again, and

e Print it on the screen (using disp and sprintf) so you can
see how your code is doing

@ Simulated annealing can take a really long time.

Lab Review
000000000000000e

Real-World Randomness: Stochastic Gradient Descent

(SGD)

@ SGD is the following algorithm. For t=1:T,
@ Randomly choose a small subset of your training data (a
minibatch: strictly speaking, SGD is minibatch size of m =1,
but practical minibatches are typically m ~ 100)
@ Perform a complete backprop iteration using the minibatch.
@ Advantage of SGD over Simulated Annealing: computational
complexity
o Instead of introducing randomness with a random weight
update (O {n}), we introduce randomness by randomly
sampling the dataset (O {m})
e Matters a lot when n is large
o Disadvantage of SGD over Simulated Annealing: It’s not
theoretically proven to converge to a global optimum
e ...but it works in practice, if training dataset is big enough.

Conclusions

Outline

@ Conclusions

Conclusions
.

Conclusions

@ Back-prop.
e You need to know how to do it.
@ ...but back-prop is only useful if you start from a good initial
set of weights, or if you have good randomness

o Knowledge-based initialization
e Sometimes, it helps if you understand what you're doing.
@ Stochastic search.

e Simulated annealing: guaranteed performance, high complexity.

e Stochastic gradient descent: not guaranteed, but low
complexity. Incidentally, | haven't tried it yet on hard2d.txt;
if you try it, please tell me how it works.

Local optimization makes a good idea better.

	Intro
	Knowledge-Based Design
	Error Metric
	Gradient Descent
	Simulated Annealing
	Lab Review
	Conclusions

