Intro	Design	Metric	Gradient	Annealing	Lab Review	Conclusions

ECE417: Neural Networks

Mark Hasegawa-Johnson

University of Illinois

2015/04/19

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Intro	Design	Metric	Gradient	Annealing	Lab Review	Conclusions
000	000000	0000	000000	000000	000000000000000	O
Outlin	ie					

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- 2 Knowledge-Based Design
- 3 Error Metric
- **Gradient Descent**
- **5** Simulated Annealing
- 6 Lab Review
- 7 Conclusions

Two-Layer Feedforward Neural Network

Gradient

Metric

Intro

•00

Design

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Conclusions

Lab Review

Neural Network = Universal Approximator

Gradient

Assume...

Design

Intro

0.00

• Linear Output Nodes: g(b) = b

Metric

- Smoothly Nonlinear Hidden Nodes: $f'(a) = \frac{df}{da}$ finite
- Smooth Target Function: *z* = h(*x*, U, V) approximates
 ζ = h*(*x*) ∈ *H*, where *H* is some class of sufficiently smooth
 functions of *x* (functions whose Fourier transform has a first
 moment less than some finite number C)

Annealing

Lab Review

- There are q hidden nodes, y_k , $1 \le k \le q$
- The input vectors are distributed with some probability density function, $p(\vec{x})$, over which we can compute expected values.

Then (Barron, 1993) showed that...

$$\max_{h^*(\vec{x})\in\mathcal{H}}\min_{U,V} E\left[h(\vec{x},U,V)-h^*(\vec{x})|^2\right] \leq \mathcal{O}\left\{\frac{1}{q}\right\}$$

Intro	Design	Metric	Gradient	Annealing	Lab Review	Conclusions
000	000000	0000	000000	000000	000000000000000000000000000000000000000	0

Neural Network Problems: Outline of Remainder of this Talk

- Knowledge-Based Design. Given U, V, f, g, what kind of function is h(x, U, V)? Can we draw z as a function of x? Can we heuristically choose U and V so that z looks kinda like ζ?
- **2** Error Metric. In what way should $\vec{z} = h(\vec{x})$ be "similar to" $\vec{\zeta} = h^*(\vec{x})$?
- Local Optimization: Gradient Descent with Back-Propagation. Given an initial U, V, how do I find \hat{U} , \hat{V} that more closely approximate $\vec{\zeta}$?
- Global Optimization: Simulated Annealing. How do I find the globally optimum values of U and V?

Intro	Design	Metric	Gradient	Annealing	Lab Review	Conclusions
000	000000	0000	000000	000000	0000000000000000	0
Outli	ne					

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

1 Intro

- 2 Knowledge-Based Design
- 3 Error Metric
- **Gradient Descent**
- **5** Simulated Annealing
- 6 Lab Review
- 7 Conclusions

Intro Design Metric Gradient Annealing Lab Review Conclusions of Axon, First Layer: $y_k = tanh(a_k)$

First Layer, kth Axon, $y_{\mu}(x_1, x_2)$

₹ 9 9 **9 0**

・ロト ・聞ト ・ヨト ・ヨト

Second Layer, Ith Synapse, $b_1(x_1,x_2)$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Intro Design Metric Gradient Annealing Lab Review Conclusions of Axon, Second Layer: $z_{\ell} = \operatorname{sign}(b_{\ell})$

Second Layer, Ith Axon, $z_1(x_1,x_2)$

E 990

・ロト ・聞ト ・ヨト ・ヨト

Intro	Design	Metric	Gradient	Annealing	Lab Review	Conclusions
	000000					

Signum and Tanh nonlinearities

▲□ > ▲圖 > ▲ 臣 > ▲ 臣 > → 臣 = ∽ 의 < ⊙ < ⊙

Intro	Design	Metric	Gradient	Annealing	Lab Review	Conclusions
	00000					

Max and Softmax

Max:

$$z_\ell = \left\{ egin{array}{cc} 1 & b_\ell = \max_m b_m \ 0 & ext{otherwise} \end{array}
ight.$$

Softmax:

$$z_{\ell} = \frac{e^{b_{\ell}}}{\sum_{m} e^{b_{m}}}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Intro	Design	Metric	Gradient	Annealing	Lab Review	Conclusions
000	000000	0000	000000	000000	0000000000000000	O
Outlir	าย					

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- 2 Knowledge-Based Design
- 3 Error Metric
- **Gradient Descent**
- **5** Simulated Annealing
- 6 Lab Review
- 7 Conclusions

Minimum Mean Squared Error (MMSE)

$$U^*, V^* = \arg\min E_n = \arg\min \frac{1}{n} \sum_{i=1}^n |\vec{\zeta}_i - \vec{z}(x_i)|^2$$

MMSE Solution: $\vec{z} = E\left[\vec{\zeta} | \vec{x}\right]$

If the training samples $(\vec{x}_i, \vec{\zeta}_i)$ are i.i.d., then

$$\mathsf{E}_{\infty} = \mathsf{E}\left[|ec{\zeta} - ec{z}|^2
ight]$$

 E_{∞} is minimized by

$$ec{z}_{MMSE}(ec{x}) = E\left[ec{\zeta}|ec{x}
ight]$$

Error Metric: How should $h(\vec{x})$ be "similar to" $h^*(\vec{x})$? Logistic output nodes:

Lab Review

Binary target vector

Suppose

Design

$$\zeta_\ell = \left\{ egin{array}{c} 1 & ext{with probability } P_\ell(ec{x}) \ 0 & ext{with probability } 1 - P_\ell(ec{x}) \end{array}
ight.$$

and suppose 0 \leq z_{ℓ} \leq 1, e.g., logistic output nodes.

Gradient

MMSE Solution: $z_{\ell} = \Pr \{ \zeta_{\ell} = 1 | \vec{x} \}$

Metric

$$\begin{split} E\left[\zeta_\ell | \vec{x} \right] &= 1 \cdot P_\ell(\vec{x}) + 0 \cdot (1 - P_\ell(\vec{x})) \\ &= P_\ell(\vec{x}) \end{split}$$

So the MMSE neural network solution is

 $z_{\ell,MMSE}(\vec{x}) = P_{\ell}(\vec{x})$

Conclusions

Error Metric: How should $h(\vec{x})$ be "similar to" $h^*(\vec{x})$? Softmax output nodes:

Annealing

Lab Review

One-Hot Vector, MKLD Solution: $z_{\ell} = \Pr \{ \zeta_{\ell} = 1 | \vec{x} \}$

Gradient

Design

Metric

- Suppose $\vec{\zeta_i}$ is a "one hot" vector, i.e., only one element is "hot" ($\zeta_{\ell(i),i} = 1$), all others are "cold" ($\zeta_{mi} = 0, m \neq \ell(i)$).
- MMSE will approach the solution $z_{\ell} = \Pr \{\zeta_{\ell} = 1 | \vec{x} \}$, but there's no guarantee that it's a correctly normalized pmf $(\sum z_{\ell} = 1)$ until it has fully converged.
- MKLD also approaches $z_{\ell} = \Pr{\{\zeta_{\ell} = 1 | \vec{x}\}}$, and guarantees that $\sum z_{\ell} = 1$. MKLD is also more computationally efficient, if $\vec{\zeta}$ is a one-hot vector.

MKLD = Minimum Kullback-Leibler Distortion

$$D_n = \frac{1}{n} \sum_{i=1}^n \sum_{\ell=1}^r \zeta_{\ell i} \log\left(\frac{\zeta_{\ell i}}{z_{\ell i}}\right) = -\frac{1}{n} \sum_{i=1}^n \log z_{\ell(i),i}$$

Conclusions

Error Metrics Summarized

Metric

Gradient

Design

• Use MSE to achieve $\vec{z} = E\left[\vec{\zeta} | \vec{x}\right]$. That's almost always what you want.

Annealing

Lab Review

Conclusions

- If ζ is a one-hot vector, then use KLD (with a softmax nonlinearity on the output nodes) to guarantee that z is a properly normalized probability mass function, and for better computational efficiency.
- If ζ_ℓ is binary, but not necessarily one-hot, then use MSE (with a logistic nonlinearity) to achieve z_ℓ = Pr {ζ_ℓ = 1|x̄}.
- If ζ_{ℓ} is signed binary ($\zeta_{\ell} \in \{-1, +1\}$, then use MSE (with a tanh nonlinearity) to achieve $z_{\ell} = E [\zeta_{\ell} | \vec{x}]$.
- After you're done training, you can make your cell phone app more efficient by throwing away the uncertainty:
 - Replace softmax output nodes with max
 - Replace logistic output nodes with unit-step
 - Replace tanh output nodes with signum

Intro	Design	Metric	Gradient	Annealing	Lab Review	Conclusions
000	000000	0000	000000	000000	0000000000000000	0
Outli	ne					

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- 2 Knowledge-Based Design
- 3 Error Metric
- Gradient Descent
- **5** Simulated Annealing
- 6 Lab Review
- 7 Conclusions

Intro	Design	Metric	Gradient	Annealing	Lab Review	Conclusions
			00000			

Gradient Descent = Local Optimization

Given an initial U, V, find \hat{U}, \hat{V} with lower error.

$$\hat{u}_{kj} = u_{kj} - \eta \frac{\partial E_n}{\partial u_{kj}}$$
$$\hat{v}_{\ell k} = v_{\ell k} - \eta \frac{\partial E_n}{\partial v_{\ell k}}$$

$\eta=\!\!{\rm Learning}$ Rate

- If η too large, gradient descent won't converge. If too small, convergence is slow. Usually we pick $\eta \approx 0.001$ and cross our fingers.
- Second-order methods like L-BFGS choose an optimal η at each step, so they're MUCH faster.

Computing the Gradient

Metric

Design

OK, let's compute the gradient of E_n with respect to the V matrix. Remember that V enters the neural net computation as $b_{\ell i} = \sum_k v_{\ell k} y_{k i}$, and then z depends on b somehow. So...

Lab Review

Gradient

000000

$$\frac{\partial E_n}{\partial v_{\ell k}} = \sum_{i=1}^n \left(\frac{\partial E_n}{\partial b_{\ell i}}\right) \left(\frac{\partial b_{\ell i}}{\partial v_{\ell k}}\right)$$
$$= \sum_{i=1}^n \epsilon_{\ell i} y_{k i}$$

where the last line only works if we define $\epsilon_{\ell i}$ in a useful way:

Back-Propagated Error

$$\epsilon_{\ell i} = \frac{\partial E_n}{\partial b_{\ell i}} = \frac{2}{n} (z_{\ell i} - \zeta_{\ell i}) g'(b_{\ell i})$$

where $g'(b) = \frac{\partial g}{\partial b}$.

Back-Propagating to the First Layer

$$\frac{\partial E_n}{\partial u_{kj}} = \sum_{i=1}^n \left(\frac{\partial E_n}{\partial a_{ki}} \right) \left(\frac{\partial a_{ki}}{\partial u_{kj}} \right) = \sum_{i=1}^n \delta_{ki} x_{ji}$$

where... $\delta_{ki} = \frac{\partial E_n}{\partial a_{ki}} = \sum_{\ell=1}^r \epsilon_{\ell i} v_{\ell k} f'(a_{ki})$

Intro	Design	Metric	Gradient	Annealing	Lab Review	Conclusions
			000000			

The Back-Propagation Algorithm

$$\begin{aligned} \hat{V} &= V - \eta \nabla_V E_n, \qquad \hat{U} = U - \eta \nabla_U E_n \\ \nabla_V E_n &= EY^T, \qquad \nabla_U E_n = DX^T \\ Y &= [\vec{y}_1, \dots, \vec{y}_n], \qquad X = [\vec{x}_1, \dots, \vec{x}_n] \\ E &= [\vec{\epsilon}_1, \dots, \vec{\epsilon}_n], \qquad D = \begin{bmatrix} \vec{\delta}_1, \dots, \vec{\delta}_n \end{bmatrix} \\ \vec{\epsilon}_i &= \frac{2}{n} g'(\vec{b}_i) \odot \left(\vec{z}_i - \vec{\zeta}_i \right), \qquad \vec{\delta}_i = f'(\vec{a}_i) \odot V^T \vec{\epsilon}_i \end{aligned}$$

... where \odot means element-wise multiplication of two vectors; $g'(\vec{b})$ and $f'(\vec{a})$ are element-wise derivatives of the $g(\cdot)$ and $f(\cdot)$ nonlinearities.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

ロイトロ アイマイト モイ・セー ワベい

Intro	Design	Metric	Gradient	Annealing	Lab Review	Conclusions
000	000000	0000	000000		0000000000000000	0
Outlin	ne					

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- 2 Knowledge-Based Design
- 3 Error Metric
- **Gradient Descent**
- 5 Simulated Annealing
- 6 Lab Review
- 7 Conclusions

- Gradient descent finds a local optimum. The \hat{U} , \hat{V} you end up with depends on the U, V you started with.
- How can you find the **global optimum** of a non-convex error function?
- The answer: Add randomness to the search, in such a way that...

 $P(\text{reach global optimum}) \stackrel{t \to \infty}{\longrightarrow} 1$

Design	Metric	Gradient	Annealing	Lab Review	Conclusions
			00000		

• Take a random step. If it goes downhill, do it.

- Take a random step. If it goes downhill, do it.
- If it goes uphill, SOMETIMES do it.

∃ _ � � � @

- If it goes uphill, SOMETIMES do it.
- Uphill steps become less probable as $t o \infty$

E 990

Intro	Design	Metric	Gradient	Annealing	Lab Review	Conclusions
				000000		

Simulated Annealing: Algorithm

FOR $t = 1 \text{ TO} \infty$, DO

- Set $\hat{U} = U + \text{RANDOM}$
- If your random step caused the error to decrease (E_n(Û) < E_n(U)), then set U = Û (prefer to go downhill)

Solution Else set
$$U = \hat{U}$$
 with probability P
(... but sometimes go uphill!)

- $P = \exp(-(E_n(\hat{U}) E_n(U))/\text{Temperature})$ (Small steps uphill are more probable than big steps uphill.)
- **2** Temperature = $T_{max} / \log(t+1)$ (Uphill steps become less probable as $t \to \infty$.)
- Whenever you reach a local optimum (U is better than both the preceding and following time steps), check to see if it's better than all preceding local optima; if so, remember it.

000 000000 0000 000000 000000 0	Intro	Design	Metric	Gradient	Annealing	Lab Review	Conclusions
					000000		

Convergence Properties of Simulated Annealing

(Hajek, 1985) proved that, if we start out in a "valley" that is separated from the global optimum by a "ridge" of height T_{max} , and if the temperature at time t is T(t), then simulated annealing converges in probability to the global optimum if

$$\sum_{t=1}^{\infty}\exp\left(-T_{max}/T(t)\right)=+\infty$$

For example, this condition is satisfied if

$$T(t) = T_{max} / \log(t+1)$$

Intro	Design	Metric	Gradient	Annealing	Lab Review	Conclusions
000	000000	0000	000000	000000		0
Outlin	ne					

- 2 Knowledge-Based Design
- 3 Error Metric
- **Gradient Descent**
- **5** Simulated Annealing
- 6 Lab Review

You'll have to plot it many times, so I recommend writing a plot function

```
function ER = nnplot(X,Z,ZETA,STRING,fignum)
[p,n]=size(X);
ER=sum(ZETA.*Z<0)/n;
figure(fignum);
plot(X(1,Z<0),X(2,Z<0),'r.',X(1,Z>0),X(2,Z>0),'b.');
title(sprintf('WS15 ANN Lab, %s, ER=%g',STRING,ER));
```


Knowledge-based design: set each row of U to be a line segment, $u_0 + u_1x_1 + u_2x_2 = 0$, on the decision boundary. u_0 is an arbitrary scale factor; $u_0 = -20$ makes the tanh work well. [x1,x2]=ginput(2); u0=-20; % Arbitrary scale factor u = -inv([x1,x2])*[u0;u0];U(1,:) = [u0,u(1),u(2)];

Check your math by plotting $x_2 = -\frac{u_0}{u_2} - \frac{u_1}{u_2}x_1$

nnplot(X,ZETA,ZETA,'Reference Labels',1); hold on; plot([0,1],-(u0/u(2))+[0,-u(1)/u(2)],'g-'); hold off;

Intro	Design	Metric	Gradient	Annealing	Lab Review	Conclusions
					000000000000000000000000000000000000000	

Here are 3 such segments, mapping out the lowest curve:

for m=1:3,
plot([0 1],-U(m,1)/U(m,3)+[0,-U(m,2)/U(m,3)]);
end

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Intro	Design	Metric	Gradient	Annealing	Lab Review	Conclusions
					000000000000000	

(1) Reflect through $x_2 = -0.75$, and (2) Shift upward:

Ufoo = [U; U(:,1)-1.5*U(:,3),U(:,2),-U(:,3)]; Ubar = [Ufoo; Ufoo-[0.5*Ufoo(:,3),zeros(6,2)]]; U = [Ubar; Ubar-[Ubar(:,3),zeros(12,2)]];

nnclassify.m: Error Rate = 14%

function [Z,Y]=nnclassify(X,U,V)
Y = tanh(U*[ones(1,n); X]);
Z = tanh(V*[ones(1,n); Y]);

nnbackprop.m: Error Rate = 2.8%

function [EPSILON,DELTA]=nnbackprop(X,Y,Z,ZETA,V)
EPSILON = 2* (1-Z.^2) .* (Z-ZETA);
DELTA = (1-Y.^2) .* (V(:,2:(q+1))' * EPSILON);

Design	Metric	Gradient	Annealing	Lab Review	Conclusions
				000000000000000	

But with random initialization: Error Rate = 28%

$$Urand = [0.02*randn(q,p+1)];$$

Vrand =
$$[0.02*randn(r,q+1)];$$

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 厘 の��

Intro	Design	Metric	Gradient	Annealing	Lab Review	Conclusions
					0000000000000000	

nnanneal.m: Error Rate = 5.1%

```
function [Es,Us,Vs] = nnanneal(X,ZETA,U0,V0,ETA,T)
for t=1:T,
U1=U0+randn(q,p+1); V1=V0+randn(r,q+1);
ER1 = sum(nnclassify(X,U1,V1).*ZETA<0)/n;
if ER1 < ER0,
    U0=U1;V0=V1;ER0=ER1;
else
    P = exp(-(ER1-ER0)*log(t+1)/ridge);
    if rand() < P,
    U0=U1;V0=V1;ER0=ER1;</pre>
```

Design	Metric	Gradient	Annealing	Lab Review	Conclusions
				000000000000000000000000000000000000000	

Here's one that Amit tried based on my mistaken early draft of the instructions for this lab. Error Rate: 28%

```
temperature=ridge/sqrt(t);
```

instead of the correct form,

```
temperature=ridge/log(t+1);
```


... and Amit solved it using Geometric Annealing. Error Rate: 0.67%

- Smaller random steps: $\Delta U \sim \mathcal{N}(0, 1e 4)$ instead of $\mathcal{N}(0, 1)$, and only one weight at a time instead of all weights at once
- Geometric annealing: temperature cools geometrically $(T(t) = \alpha T(t-1))$ rather than logarithmically $T(t) = c/\log(t+1)$

Simulated Annealing: More Results

Algorithm	$c \text{ or } \alpha$	t	Error Rate
Hajek Cooling	1	52356	5.1%
$(\mathit{T}=\mathit{c}/\log(\mathit{t}+1))$	10 ⁻⁴	1800	0.70%
Geometric Annealing	0.7	500	0.43%
$T(t) = \alpha T(t-1)$	0.8	500	0.40%
	0.9	500	0.80%

- Gaussian random walk results in very large weights
 - I fought this using the mod operator, to map weights back to the range [-25, 25]
 - I suspect it matters, but I'm not sure
- Every time you reach a new low error,
 - Store it, and its associated weights, in case you never find it again, and
 - Print it on the screen (using disp and sprintf) so you can see how your code is doing

• Simulated annealing can take a really long time.

Intro Design Metric Gradient Annealing Lab Review Conclusions 000000 000000 000000 000000 000000 00 Real-World Randomness: Stochastic Gradient Descent (SGD)

- SGD is the following algorithm. For t=1:T,
 - Randomly choose a small subset of your training data (a **minibatch**: strictly speaking, SGD is minibatch size of m = 1, but practical minibatches are typically $m \sim 100$)
 - **2** Perform a complete backprop iteration using the minibatch.
- Advantage of SGD over Simulated Annealing: computational complexity
 - Instead of introducing randomness with a random weight update ($\mathcal{O} \{n\}$), we introduce randomness by randomly sampling the dataset ($\mathcal{O} \{m\}$)
 - Matters a lot when *n* is large
- Disadvantage of SGD over Simulated Annealing: It's not theoretically proven to converge to a global optimum
 - ... but it works in practice, if training dataset is big enough.

Intro	Design	Metric	Gradient	Annealing	Lab Review	Conclusions
000	000000	0000	000000	000000	000000000000000	O
Outlir	ne					

1 Intro

- 2 Knowledge-Based Design
- 3 Error Metric
- **Gradient Descent**
- **5** Simulated Annealing
- 6 Lab Review

- Back-prop.
 - You need to know how to do it.
 - ... but back-prop is only useful if you start from a good initial set of weights, or if you have good randomness
- Knowledge-based initialization
 - Sometimes, it helps if you understand what you're doing.
- Stochastic search.
 - Simulated annealing: guaranteed performance, high complexity.
 - Stochastic gradient descent: not guaranteed, but low complexity. Incidentally, I haven't tried it yet on hard2d.txt; if you try it, please tell me how it works.

Confucius Says...

Local optimization makes a good idea better.