
Intro Design Metric Gradient Annealing Lab Review Conclusions

ECE417: Neural Networks

Mark Hasegawa-Johnson

University of Illinois

2015/04/19

Intro Design Metric Gradient Annealing Lab Review Conclusions

Outline

1 Intro

2 Knowledge-Based Design

3 Error Metric

4 Gradient Descent

5 Simulated Annealing

6 Lab Review

7 Conclusions

Intro Design Metric Gradient Annealing Lab Review Conclusions

Two-Layer Feedforward Neural Network

1 x1 x2 . . . xp ~x is the input vector

ak = uk0 +
∑p

j=1 ukjxj ~a = U~x

1 y1 y2 . . . yq yk = f (ak) ~y = f (~a)

b` = vk0 +
∑q

k=1 v`kyk ~b = V~y

z1 z2 . . . zr z` = g(b`) ~z = g(~b)

~z = h(~x ,U,V)

Intro Design Metric Gradient Annealing Lab Review Conclusions

Neural Network = Universal Approximator

Assume. . .

Linear Output Nodes: g(b) = b

Smoothly Nonlinear Hidden Nodes: f ′(a) = df
da finite

Smooth Target Function: ~z = h(~x ,U,V) approximates
~ζ = h∗(~x) ∈ H, where H is some class of sufficiently smooth
functions of ~x (functions whose Fourier transform has a first
moment less than some finite number C)

There are q hidden nodes, yk , 1 ≤ k ≤ q

The input vectors are distributed with some probability density
function, p(~x), over which we can compute expected values.

Then (Barron, 1993) showed that. . .

max
h∗(~x)∈H

min
U,V

E
[
h(~x ,U,V)− h∗(~x)|2

]
≤ O

{
1

q

}

Intro Design Metric Gradient Annealing Lab Review Conclusions

Neural Network Problems: Outline of Remainder of this Talk

1 Knowledge-Based Design. Given U,V , f , g , what kind of
function is h(~x ,U,V)? Can we draw ~z as a function of ~x?
Can we heuristically choose U and V so that ~z looks kinda
like ~ζ?

2 Error Metric. In what way should ~z = h(~x) be “similar to”
~ζ = h∗(~x)?

3 Local Optimization: Gradient Descent with
Back-Propagation. Given an initial U,V , how do I find Û,
V̂ that more closely approximate ~ζ?

4 Global Optimization: Simulated Annealing. How do I find
the globally optimum values of U and V ?

Intro Design Metric Gradient Annealing Lab Review Conclusions

Outline

1 Intro

2 Knowledge-Based Design

3 Error Metric

4 Gradient Descent

5 Simulated Annealing

6 Lab Review

7 Conclusions

Intro Design Metric Gradient Annealing Lab Review Conclusions

Synapse, First Layer: ak = uk0 +
∑2

j=1 ukjxj

Intro Design Metric Gradient Annealing Lab Review Conclusions

Axon, First Layer: yk = tanh(ak)

Intro Design Metric Gradient Annealing Lab Review Conclusions

Synapse, Second Layer: b` = v`0 +
∑2

k=1 v`kyk

Intro Design Metric Gradient Annealing Lab Review Conclusions

Axon, Second Layer: z` = sign(b`)

Intro Design Metric Gradient Annealing Lab Review Conclusions

Step and Logistic nonlinearities Signum and Tanh nonlinearities

Intro Design Metric Gradient Annealing Lab Review Conclusions

“Linear Nonlinearity” and ReLU Max and Softmax

Max:

z` =

{
1 b` = maxm bm
0 otherwise

Softmax:

z` =
eb`∑
m ebm

Intro Design Metric Gradient Annealing Lab Review Conclusions

Outline

1 Intro

2 Knowledge-Based Design

3 Error Metric

4 Gradient Descent

5 Simulated Annealing

6 Lab Review

7 Conclusions

Intro Design Metric Gradient Annealing Lab Review Conclusions

Error Metric: How should h(~x) be “similar to” h∗(~x)?
Linear output nodes:

Minimum Mean Squared Error (MMSE)

U∗,V ∗ = arg minEn = arg min
1

n

n∑
i=1

|~ζi − ~z(xi)|2

MMSE Solution: ~z = E
[
~ζ|~x
]

If the training samples (~xi , ~ζi) are i.i.d., then

E∞ = E
[
|~ζ − ~z |2

]
E∞ is minimized by

~zMMSE (~x) = E
[
~ζ|~x
]

Intro Design Metric Gradient Annealing Lab Review Conclusions

Error Metric: How should h(~x) be “similar to” h∗(~x)?
Logistic output nodes:

Binary target vector

Suppose

ζ` =

{
1 with probability P`(~x)
0 with probability 1− P`(~x)

and suppose 0 ≤ z` ≤ 1, e.g., logistic output nodes.

MMSE Solution: z` = Pr {ζ` = 1|~x}

E [ζ`|~x] = 1 · P`(~x) + 0 · (1− P`(~x))

= P`(~x)

So the MMSE neural network solution is

z`,MMSE (~x) = P`(~x)

Intro Design Metric Gradient Annealing Lab Review Conclusions

Error Metric: How should h(~x) be “similar to” h∗(~x)?
Softmax output nodes:

One-Hot Vector, MKLD Solution: z` = Pr {ζ` = 1|~x}

Suppose ~ζi is a “one hot” vector, i.e., only one element is
“hot” (ζ`(i),i = 1), all others are “cold” (ζmi = 0, m 6= `(i)).

MMSE will approach the solution z` = Pr {ζ` = 1|~x}, but
there’s no guarantee that it’s a correctly normalized pmf
(
∑

z` = 1) until it has fully converged.

MKLD also approaches z` = Pr {ζ` = 1|~x}, and guarantees
that

∑
z` = 1. MKLD is also more computationally efficient,

if ~ζ is a one-hot vector.

MKLD = Minimum Kullback-Leibler Distortion

Dn =
1

n

n∑
i=1

r∑
`=1

ζ`i log

(
ζ`i
z`i

)
= −1

n

n∑
i=1

log z`(i),i

Intro Design Metric Gradient Annealing Lab Review Conclusions

Error Metrics Summarized

Use MSE to achieve ~z = E
[
~ζ|~x
]
. That’s almost always what

you want.

If ~ζ is a one-hot vector, then use KLD (with a softmax
nonlinearity on the output nodes) to guarantee that ~z is a
properly normalized probability mass function, and for better
computational efficiency.

If ζ` is binary, but not necessarily one-hot, then use MSE
(with a logistic nonlinearity) to achieve z` = Pr {ζ` = 1|~x}.
If ζ` is signed binary (ζ` ∈ {−1,+1}, then use MSE (with a
tanh nonlinearity) to achieve z` = E [ζ`|~x].

After you’re done training, you can make your cell phone app
more efficient by throwing away the uncertainty:

Replace softmax output nodes with max
Replace logistic output nodes with unit-step
Replace tanh output nodes with signum

Intro Design Metric Gradient Annealing Lab Review Conclusions

Outline

1 Intro

2 Knowledge-Based Design

3 Error Metric

4 Gradient Descent

5 Simulated Annealing

6 Lab Review

7 Conclusions

Intro Design Metric Gradient Annealing Lab Review Conclusions

Gradient Descent = Local Optimization

Intro Design Metric Gradient Annealing Lab Review Conclusions

Gradient Descent = Local Optimization

Given an initial U,V , find Û, V̂ with lower error.

ûkj = ukj − η
∂En

∂ukj

v̂`k = v`k − η
∂En

∂v`k

η =Learning Rate

If η too large, gradient descent won’t converge. If too small,
convergence is slow. Usually we pick η ≈ 0.001 and cross our
fingers.

Second-order methods like L-BFGS choose an optimal η at
each step, so they’re MUCH faster.

Intro Design Metric Gradient Annealing Lab Review Conclusions

Computing the Gradient

OK, let’s compute the gradient of En with respect to the V
matrix. Remember that V enters the neural net computation as
b`i =

∑
k v`kyki , and then z depends on b somehow. So. . .

∂En

∂v`k
=

n∑
i=1

(
∂En

∂b`i

)(
∂b`i
∂v`k

)

=
n∑

i=1

ε`iyki

where the last line only works if we define ε`i in a useful way:

Back-Propagated Error

ε`i =
∂En

∂b`i
=

2

n
(z`i − ζ`i)g ′(b`i)

where g ′(b) = ∂g
∂b .

Intro Design Metric Gradient Annealing Lab Review Conclusions

1 x1 x2 . . . xp ~x is the input vector

ak = uk0 +
∑p

j=1 ukjxj ~a = U~x

1 y1 y2 . . . yq yk = f (ak) ~y = f (~a)

b` = vk0 +
∑q

k=1 v`kyk ~b = V~y

z1 z2 . . . zr z` = g(b`) ~z = g(~b)

~z = h(~x ,U,V)

Back-Propagating to the First Layer

∂En

∂ukj
=

n∑
i=1

(
∂En

∂aki

)(
∂aki
∂ukj

)
=

n∑
i=1

δkixji

where. . . δki =
∂En

∂aki
=

r∑
`=1

ε`iv`k f
′(aki)

Intro Design Metric Gradient Annealing Lab Review Conclusions

The Back-Propagation Algorithm

V̂ = V − η∇VEn, Û = U − η∇UEn

∇VEn = EY T , ∇UEn = DXT

Y = [~y1, . . . , ~yn] , X = [~x1, . . . ,~xn]

E = [~ε1, . . . ,~εn] , D =
[
~δ1, . . . , ~δn

]
~εi =

2

n
g ′(~bi)�

(
~zi − ~ζi

)
, ~δi = f ′(~ai)� V T~εi

. . . where � means element-wise multiplication of two vectors;
g ′(~b) and f ′(~a) are element-wise derivatives of the g(·) and f (·)
nonlinearities.

Intro Design Metric Gradient Annealing Lab Review Conclusions

Derivatives of the Nonlinearities

Logistic Tanh ReLU

Intro Design Metric Gradient Annealing Lab Review Conclusions

Outline

1 Intro

2 Knowledge-Based Design

3 Error Metric

4 Gradient Descent

5 Simulated Annealing

6 Lab Review

7 Conclusions

Intro Design Metric Gradient Annealing Lab Review Conclusions

Simulated Annealing: How can we find the globally
optimum U ,V ?

Gradient descent finds a local optimum. The Û, V̂ you end up
with depends on the U,V you started with.

How can you find the global optimum of a non-convex error
function?

The answer: Add randomness to the search, in such a way
that. . .

P(reach global optimum)
t→∞−→ 1

Intro Design Metric Gradient Annealing Lab Review Conclusions

Take a random step. If it goes downhill, do it.

Intro Design Metric Gradient Annealing Lab Review Conclusions

Take a random step. If it goes downhill, do it.

If it goes uphill, SOMETIMES do it.

Intro Design Metric Gradient Annealing Lab Review Conclusions

Take a random step. If it goes downhill, do it.
If it goes uphill, SOMETIMES do it.
Uphill steps become less probable as t →∞

Intro Design Metric Gradient Annealing Lab Review Conclusions

Simulated Annealing: Algorithm

FOR t = 1 TO ∞, DO

1 Set Û = U + RANDOM

2 If your random step caused the error to decrease
(En(Û) < En(U)), then set U = Û
(prefer to go downhill)

3 Else set U = Û with probability P
(. . . but sometimes go uphill!)

1 P = exp(−(En(Û)− En(U))/Temperature)
(Small steps uphill are more probable than big steps
uphill.)

2 Temperature = Tmax/ log(t + 1)
(Uphill steps become less probable as t →∞.)

4 Whenever you reach a local optimum (U is better than both
the preceding and following time steps), check to see if it’s
better than all preceding local optima; if so, remember it.

Intro Design Metric Gradient Annealing Lab Review Conclusions

Convergence Properties of Simulated Annealing

(Hajek, 1985) proved that, if we start out in a “valley” that is
separated from the global optimum by a “ridge” of height Tmax ,
and if the temperature at time t is T (t), then simulated annealing
converges in probability to the global optimum if

∞∑
t=1

exp (−Tmax/T (t)) = +∞

For example, this condition is satisfied if

T (t) = Tmax/ log(t + 1)

Intro Design Metric Gradient Annealing Lab Review Conclusions

Outline

1 Intro

2 Knowledge-Based Design

3 Error Metric

4 Gradient Descent

5 Simulated Annealing

6 Lab Review

7 Conclusions

Intro Design Metric Gradient Annealing Lab Review Conclusions

Here’s the dataset

Intro Design Metric Gradient Annealing Lab Review Conclusions

You’ll have to plot it many times, so I recommend writing a plot
function

function ER = nnplot(X,Z,ZETA,STRING,fignum)

[p,n]=size(X);

ER=sum(ZETA.*Z<0)/n;

figure(fignum);

plot(X(1,Z<0),X(2,Z<0),’r.’,X(1,Z>0),X(2,Z>0),’b.’);

title(sprintf(’WS15 ANN Lab, %s, ER=%g’,STRING,ER));

Intro Design Metric Gradient Annealing Lab Review Conclusions

Knowledge-based design: set each row of U to be a line segment,
u0 + u1x1 + u2x2 = 0, on the decision boundary.
u0 is an arbitrary scale factor; u0 = −20 makes the tanh work well.

[x1,x2]=ginput(2);

u0=-20; % Arbitrary scale factor

u = -inv([x1,x2])*[u0;u0];

U(1,:) = [u0,u(1),u(2)];

Intro Design Metric Gradient Annealing Lab Review Conclusions

Check your math by plotting x2 = −u0
u2
− u1

u2
x1

nnplot(X,ZETA,ZETA,’Reference Labels’,1);

hold on;

plot([0,1],-(u0/u(2))+[0,-u(1)/u(2)],’g-’);

hold off;

Intro Design Metric Gradient Annealing Lab Review Conclusions

Here are 3 such segments, mapping out the lowest curve:

for m=1:3,

plot([0 1],-U(m,1)/U(m,3)+[0,-U(m,2)/U(m,3)]);

end

Intro Design Metric Gradient Annealing Lab Review Conclusions

(1) Reflect through x2 = −0.75, and (2) Shift upward:

Ufoo = [U; U(:,1)-1.5*U(:,3),U(:,2),-U(:,3)];

Ubar = [Ufoo; Ufoo-[0.5*Ufoo(:,3),zeros(6,2)]];

U = [Ubar; Ubar-[Ubar(:,3),zeros(12,2)]];

Intro Design Metric Gradient Annealing Lab Review Conclusions

nnclassify.m: Error Rate = 14%

function [Z,Y]=nnclassify(X,U,V)

Y = tanh(U*[ones(1,n); X]);

Z = tanh(V*[ones(1,n); Y]);

Intro Design Metric Gradient Annealing Lab Review Conclusions

nnbackprop.m: Error Rate = 2.8%

function [EPSILON,DELTA]=nnbackprop(X,Y,Z,ZETA,V)

EPSILON = 2* (1-Z.^2) .* (Z-ZETA);

DELTA = (1-Y.^2) .* (V(:,2:(q+1))’ * EPSILON);

Intro Design Metric Gradient Annealing Lab Review Conclusions

But with random initialization: Error Rate = 28%

Urand = [0.02*randn(q,p+1)];

Vrand = [0.02*randn(r,q+1)];

[Uc,Vc] = nndescent(X,ZETA,Urand,Vrand,0.1,1000);

[Zc,Yc] = nnclassify(X,Uc,Vc);

Intro Design Metric Gradient Annealing Lab Review Conclusions

Intro Design Metric Gradient Annealing Lab Review Conclusions

nnanneal.m: Error Rate = 5.1%

function [Es,Us,Vs] = nnanneal(X,ZETA,U0,V0,ETA,T)

for t=1:T,

U1=U0+randn(q,p+1); V1=V0+randn(r,q+1);

ER1 = sum(nnclassify(X,U1,V1).*ZETA<0)/n;

if ER1 < ER0,

U0=U1;V0=V1;ER0=ER1;

else

P = exp(-(ER1-ER0)*log(t+1)/ridge);

if rand() < P,

U0=U1;V0=V1;ER0=ER1;

Intro Design Metric Gradient Annealing Lab Review Conclusions

Here’s one that Amit tried based on my mistaken early draft of the
instructions for this lab. Error Rate: 28%

temperature=ridge/sqrt(t);

instead of the correct form,

temperature=ridge/log(t+1);

Intro Design Metric Gradient Annealing Lab Review Conclusions

. . . and Amit solved it using Geometric Annealing. Error Rate:
0.67%

Smaller random steps: ∆U ∼ N (0, 1e − 4) instead of
N (0, 1), and only one weight at a time instead of all weights
at once

Geometric annealing: temperature cools geometrically
(T (t) = αT (t − 1)) rather than logarithmically
T (t) = c/ log(t + 1)

Intro Design Metric Gradient Annealing Lab Review Conclusions

Simulated Annealing: More Results

Algorithm c or α t Error Rate

Hajek Cooling 1 52356 5.1%
(T = c/ log(t + 1)) 10−4 1800 0.70%

Geometric Annealing 0.7 500 0.43%
T (t) = αT (t − 1) 0.8 500 0.40%

0.9 500 0.80%

Intro Design Metric Gradient Annealing Lab Review Conclusions

More Comments on Simulated Annealing

Gaussian random walk results in very large weights

I fought this using the mod operator, to map weights back to
the range [−25, 25]
I suspect it matters, but I’m not sure

Every time you reach a new low error,

Store it, and its associated weights, in case you never find it
again, and
Print it on the screen (using disp and sprintf) so you can
see how your code is doing

Simulated annealing can take a really long time.

Intro Design Metric Gradient Annealing Lab Review Conclusions

Real-World Randomness: Stochastic Gradient Descent
(SGD)

SGD is the following algorithm. For t=1:T,
1 Randomly choose a small subset of your training data (a

minibatch: strictly speaking, SGD is minibatch size of m = 1,
but practical minibatches are typically m ∼ 100)

2 Perform a complete backprop iteration using the minibatch.

Advantage of SGD over Simulated Annealing: computational
complexity

Instead of introducing randomness with a random weight
update (O{n}), we introduce randomness by randomly
sampling the dataset (O{m})
Matters a lot when n is large

Disadvantage of SGD over Simulated Annealing: It’s not
theoretically proven to converge to a global optimum

. . . but it works in practice, if training dataset is big enough.

Intro Design Metric Gradient Annealing Lab Review Conclusions

Outline

1 Intro

2 Knowledge-Based Design

3 Error Metric

4 Gradient Descent

5 Simulated Annealing

6 Lab Review

7 Conclusions

Intro Design Metric Gradient Annealing Lab Review Conclusions

Conclusions

Back-prop.

You need to know how to do it.
. . . but back-prop is only useful if you start from a good initial
set of weights, or if you have good randomness

Knowledge-based initialization

Sometimes, it helps if you understand what you’re doing.

Stochastic search.

Simulated annealing: guaranteed performance, high complexity.
Stochastic gradient descent: not guaranteed, but low
complexity. Incidentally, I haven’t tried it yet on hard2d.txt;
if you try it, please tell me how it works.

Confucius Says. . .

Local optimization makes a good idea better.

	Intro
	Knowledge-Based Design
	Error Metric
	Gradient Descent
	Simulated Annealing
	Lab Review
	Conclusions

