
ECE 417 MP7 Walkthrough - Shot-Boundary
Detection

Dan Soberal (ECE 417 TA)
Spring 2014

Introduction

1. We have now dealt with a number of machine learning and
multimedia signal processing techniques. We’ve done nonparametric
and parametric models, various classifiers, and image retrieval
techniques.

2. In terms of techniques and concepts, there is not a great deal of
material that is new for this machine problem. It is more of a natural
extension of what you already know about features in general.

3. The goal of this machine problem is to implement a shot-boundary
detector. In other words, given a vide, we want to detect when there
is a shot-change (in other words, a change in the scene).

4. Most of the existing methods detect shot boundaries by employing
some kind of distance measure and by measuring the frame-to-
frame content change. A predefined threshold for the value of these
distances is mostly used to detect shot boundaries.

Overview
1. Two videos are given on the webpage. In both we give you the

overall video file, the image files, and the audio file. You will only
really need the image files and audio files, the video is just for
reference. In other words, if you write your code in such a way that
it specifically depends on where these images/audio are in your
directory, then don’t include the videos themselves when you submit
your deliverables.

2. Watch the video files, and look through the given image frames to
determine where the true shot boundaries are.

3. Write code to evaluate a series of image and audio features for each
frame (combined features will be the concatenation of these two
matrices).

4. Compute inter-frame distance for each frame’s feature vector
5. Judge whether or not a scene change has occured by seeing if

inter-frame distance is above a certain threshold. Where’s the
threshold, you ask? You decide.

6. Evaluate the detected frames against your true-shot boundaries you
have recorded.

Taking a step back, and thinking about things...

1. Video 1 should have extremely high accuracy for boundary detection
using image features (use it as a reference for your algorithm).
Video 2 is more complicated as far as images are concerned.

2. Common sense: is it easier to detect shot changes with images or
audio samples? Under what conditions? (HINT: ever watched the
news?, OTHER HINT: how do you transition between frames?)

3. These are the question you should think about while designing your
algorithm (for the code) and while interpreting your results (for your
report).

4. < Videos watched at this point in the lecture >

Evaluating the True Transitions

1. Sometimes it’s easy to evaluate a where they are, and sometimes it’s
not... (see previous slide)

2. It’s up to you as the designer to figure out where the acceptable
ranges are for ambiguous transitions and keep these decisions in
mind when deciding whether or not the transition you recognized is
correct.

Audio Processing (Cepstrum)
1. Back to Cepstral features!
2. To avoid what happened in MP3, use these parameters:

2.1 Offset your cepstral feature results so that they don’t contain the DC
(c[1]) component. In other words, when saving all your coefficients
for each frame take results[2:(NumComponents+1)] instead of
results[1:(NumComponents)]

2.2 Hamming Window of length L (you will have to design L)
2.3 DO NOT RESIZE YOUR SIGNAL
2.4 50% overlap
2.5 Incorrect implementation will result in loss of points
2.6 See MP3 walkthrough for the main part of cepstrum code (if yours is

still wrong somehow).
3. You will need to determine the window size based on the number of

frames to make the audio frames align with the image frames. How
do you do this? Well, there is a deterministic equation for
determining the number of frames: N = 1 + floor

[
T−W

W −ceil[P×W]

]
.

Algebraically solve this equation for W , given that T is the signal
length, W is the window size, P is the overlap such that P ∈ (0, 1).

Audio Processing (New Features)

1. We’ll introduce a couple of new features into our feature vector:
Energy and Zero-Crossing Rate (ZCR).

2. Energy follows the usual definition from Signal Processing theory.
However, it’s better to normalize the energy by dividing by N,
though, so let’s do that: En = 1

N
∑N

k=1 |x [k]|2

3. The zero-crossing rate is literally exactly what it sounds like: count
the number of time the signal cross the x-axis. Like the energy, we’ll
normalize it for our implementation:
ZCRn = 1

N
∑N−1

k=1 |sign (xk+1)− sign (xk) |
4. Both of these can be written in 1 line each in Matlab.

Audio Processing (Putting it all together)

1. For each frame, compute the 12 cesptral coefficients (again,
excluding the DC component), the zero-crossing rate, and the
energy of the signal. Store them all in a vector.

2. Thus, for each frame 1 ≤ n ≤ Nframes , make a vector an such that
an =

[
En ZCRn c[2] . . . c[13]

]T .
3. Store all such feature vectors into a matrix that A that is

dim(A) = 14× Nframes , or in more general terms,
dim(A) = (Ncepstrum + 2)× Nframes .

4. Now you can see how this is a relatively easy modification of your
current cepstrum function (ie, add two lines of code, and maybe
change one existing line, and then you are done).

Image Processing (Raw Vectors)

1. To do the image processing, we’ll make use color, but only 2
components of it. We’ll use normalized R and G values (which
should give us a feature representation that is robust to changes in
illumination).

2. Read the images, and convert the images to doubles (and normalize
by dividing by 255) for processing

3. Separate the image into 4 quadrants: I[1 : N/2, 1 : N/2],
I[(N/2 + 1) : N, (N/2 + 1) : N], I[(N/2 + 1) : N, 1 : N/2],
I[1 : N/2, (N/2 + 1) : N]

4. Compute the normalized R and G components components of each
quadrant: R̂i,n =

Ri,n
Ri,n+Gi,n+Bi,n

and Ĝn,i =
Gi,n

Ri,n+Gi,n+Bi,n
for 1 ≤ i ≤ 4

and 1 ≤ n ≤ Nframes .
5. HINT: at this point we no longer care about the image indices

themselves, so feel free to unroll each matrix R̂i,n into a vector r̂i,n
and each matrix Ĝi,n into a vector ĝi,n. In fact, this will make it
much easier to compute this histogram.

Image Processing (Histogram Implementation)
1. Next, we create a 2D histogram h(ĝi,n, r̂i,n) for each frame n and

each quadrant i .
2. We want the 2D histogram to have 8 bins for r and 8 bins for g for

a total of 64 bins
3. Compute the 2D histogram in one line (per each n and i) in matlab

using the hist3() function. My call was essentially:
h = hist3([r_in g_in],’Edges’,edges);

where edges is a 2× 1 cell containing the edges we want to evaluate
the histogram over (remember that we want 8 bins per axis, and at
this point the vectors should only have values between 0 and 1). Be
sure to read the documentation for this function to fully understand
it before implementing it

4. Once you do this for each of the 4 quadrants, you will have 4 vectors
that are 64× 1. Concatenate them together to create a 256× 1
vector for that frame.

5. Finally, create a matrix of all the feature vectors G such that
dim(G) = 256× Nframes .

Image Processing (Histogram Example)
The histograms should look something like this.

For actually getting the features, turn the histogram into a column vector
(again, by unrolling the matrix) and divide by the number of elements (in
other words, the length of r and the length of g).

Image Processing Hints/ Warnings

1. I’m sure some of you will be tempted to read every image and store
all the matrices. This is a very bad idea and will result in memory
inefficiency. It would be much smarter to process the images one at
a time and only store the matrix of features. This will allow you
store all your data in a space that is 256×Nframes instead of a space
that is D1 × D2 × Nframes

2. Coding-wise, think about coding this as a for loop over the frames,
and then a for loop for each quadrant. Obviously it is neither wise
nor neccessary to iterate through the image indices

Fusion

There’s not much to fusion. Literally just concatenate your audio
features matrix and your image feature matrix.

F =

[
A
G

]
(1)

dim(F) = (Ncepstrum + 2 + 256)× Nframes (2)

Inter-Frame Distances

Let the feature matrix you are currently working with (either A, G, or F)
be denoted as X. You can compute the interframe distance as:

dn,n−1 = ‖xn − xn−1‖2, d0,−1 = 0, xn ∈ X, dn,n−1 ∈ d (3)

d =
[
0
∑

rows
(
|X2:N − X1:(N−1)| � |X2:N − X1:(N−1)|

)]T (4)

In this case, the circle-dot operator refers to element-by-element
multiplication (.* in Matlab). You can compute this distance for ALL n
in exactly 1 line of code in Matlab. It is inadvisable to loop over the
frames and compute this norm iteratively.

Shot Boundary Threshold Determination

1. This is really up to you.
2. One way to figure out a good metric to use for the thresholds during

the ”fine-tuning” phase is to use the ginput() function in Matlab.
Essentially, this will allow you to get the (x,y) coordinates of where
you click your mouse. This in turn allows you to set boundaries by
mouse-clicks by setting boundary = y. For the final implementation
that you turn in, though, make sure you have established where the
boundaries should be (it should run on it’s own with nothing
required on my part).

3. You can also create rules for determining thresholds (in my case, I
used a linear combination of two statistics of the distance signal over
all frames). Feel free to come up with rules similar to that, or
completely different than that (again, up to you). The only
requirement for setting the threshold is that it makes sense given
signal processing intuition or experimental data.

4. Whatever threshold you use, be sure to include the threshold itself
(or the rule itself) and your process for coming up with said rule.

Shot Boundary and Inter-frame Distance Example

The plot below is an example of the inter-frame distance signal, with a
threshold line drawn in.

Determining Accuracy

1. You can determine accuracy by counting the frames returned and
seeing which were true-positives, which were missed detections, and
which were false positives. The number of true positives divided by
the total number of true transitions is the accuracy. The way I did it
was the following:
1.1 Make Matlab calculate this for you by listing the number of true

transitions in a matrix that is N × 2 where N is the number of
transitions.

1.2 The first column is the start point of the transition, the second
column is the end point

1.3 If the error between the transition index returned by your algorithm
and the row-wise mean of your matrix is below some threshold
(generally M/2 for the transition in question where M is the width of
the transition) the return a true positive, otherwise return nothing.

1.4 The number of returned positive hits divided by the total number of
true transitions is the accuracy

Some Checkpoints You Should Be Able to Meet

1. Because of the structure of the first video, it should be easy to get
100% accuracy for the image-based boundary detection.

2. Likewise, the second video will be more difficult for your algorithm
to parse. You should not expect 100% accuracy. Something greater
than 75% would be acceptable

3. I will leave the other results to your imagination. Design your
algorithm within the bounds given thus far to acheive maximal
results.

Deliverables
1. The report

1.1 The report should cover your design implementation. Specifically,
how did you design your thresholding rules, how did you structure
your algorithm, what frames did you chose as the ”truth” for your
transition boundaries, how did you write an algorithm to determine
accuracy, etc.

1.2 In addition, it should include an intelligent discussion of the results
themselves (accuracy, etc) as well as your interpretation of the
results (which of the three methods is best, why, and under what
conditions).

1.3 Your report should be submitted as a pdf
2. Your Code - You should have all the neccessary functions and a

single main wrapper program that runs everything. Your code should
work ”out of the box”, so to speak, with zero intervention required
on my part.

3. Your Readme.txt file - Your readme file should list any
implementation details that are relevant to running your code. If I
can’t figure out exactly how to run your code and reproduce your
results from your readme file, then you will lose points.

Coding Guidelines
1. The first way you think of to accomplish a task in code may or may

not (and probably isn’t) the best way.
2. For each task, try to think about how to program it in such a way

that you minimize lines of code (function calls for repeated code),
maximize accuracy (have your code actually perform the correct
operations), and minimize overhead time (program in a way that is
optimal for the paradigm of the programming language in question).

3. Remember that Matlab works best on vectorized operations, so
vectorize every operation you possibly can (minimize calculations
iterated through for loops unless the net operation is cheap and
fast). Most of the operations for this MP can be done in one or two
lines.

4. If your code takes more than 3 minutes to execute, then you must
re-think your approach. Programs with excessive run-times will lose
points.

5. Don’t hard code things if you can avoid it
6. Use functions to break up your code, it will make your code more

readable and is ultimately easier to use from an implementation
perspective

Suggested Functions

Remember that built-in Matlab functions that trivialize the problem at
hand or functions that are otherwise not written by you are banned. Here
are the functions that I needed to do this problem.

1. cell, ones, zeros, dir, pwd
2. numel, size, length, ceil, floor
3. imread, double, audioread
4. fft, ifft, log, abs, hamming
5. sum, sign, hist3

Some other functions that might be useful are:
1. cellfun, bsxfun, struct, norm, mean, max, median, min, mode, var,

ginput
In other words, you don’t really need to much outside of the usual basic
functions to do this machine problem.

