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Final Exam: General Structure

About twice as long as a midterm (i.e., 8-10 problems with
1-3 parts each)

You’ll have 3 hours for the exam (December 13, 8-11am)

The usual rules: no calculators or computers, two sheets of
handwritten notes, you will have two pages of formulas
provided on the exam, published by the Friday before the
exam.
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Final Exam: Topics Covered

17%: Material from exam 1 (signal processing)

17%: Material from exam 2 (probability)

66%: Material from the last third of the course (neural
networks)
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Material from the last third of the course

Neural networks & back-propagation

CNN & Faster RCNN

Partial derivatives & RNN

LSTM



Topics Neural Networks CNN & Faster-RCNN Partial derivatives & RNN LSTM Summary

Outline

1 Topics

2 Neural Networks

3 CNN & Faster-RCNN

4 Partial derivatives & RNN

5 LSTM

6 Summary



Topics Neural Networks CNN & Faster-RCNN Partial derivatives & RNN LSTM Summary

Two-Layer Feedforward Neural Network

1 x1 x2 . . . xD ~x is the input vector
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ŷ = h(~x ,W (1), ~b(1),W (2), ~b(2))
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How to train a neural network

1 Find a training dataset that contains n examples showing
the desired output, ~yi , that the NN should compute in
response to input vector ~xi :

D = {(~x1, ~y1), . . . , (~xn, ~yn)}

2 Randomly initialize W (1), ~b(1), W (2), and ~b(2).

3 Perform forward propagation: find out what the neural net
computes as ŷi for each ~xi .

4 Define a loss function that measures how badly ŷ differs
from ~y .

5 Perform back propagation to find the derivative of the loss
w.r.t. W (1), ~b(1), W (2), and ~b(2).

6 Perform gradient descent to improve W (1), ~b(1), W (2), and
~b(2).

7 Repeat steps 3-6 until convergence.
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Gradient Descent = Local Optimization

Given an initial W , b, find new values of W , b with lower error.

w
(1)
kj ← w

(1)
kj − η

dL
dw

(1)
kj

w
(2)
kj ← w

(2)
kj − η

dL
dw

(2)
kj

η =Learning Rate

If η too large, gradient descent won’t converge. If too small,
convergence is slow.

Second-order methods like Newton’s method, L-BFGS and
Adam choose an optimal η at each step, so they’re MUCH
faster.
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Loss Function: How should y be “similar to” ŷ?

Minimum Mean Squared Error (MMSE)

W ∗, b∗ = arg minL = arg min
1

2n

n∑
i=1

‖~yi − ŷ(~xi )‖2

MMSE Solution: ŷ → E [~y |~x ]

If the training samples (~xi , ~yi ) are i.i.d., then

lim
n→∞

L =
1

2
E
[
‖~y − ŷ‖2

]
which is minimized by

ŷMMSE (~x) = E [~y |~x ]
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Binary Cross Entropy

Suppose we treat the neural net output as a noisy estimator,
p̂
Y |~X (y |~x), of the unknown true pmf p

Y |~X (y |~x):

ŷi = p̂
Y |~X (1|~x),

so that

p̂
Y |~X (yi |~xi ) =

{
ŷi yi = 1

1− ŷi yi = 0

The binary cross-entropy loss is the negative log probability of the
training data, assuming i.i.d. training examples:

LBCE = −1

n

n∑
i=1

ln p̂
Y |~X (yi |~xi )

= −1

n

n∑
i=1

yi (ln ŷi ) + (1− yi ) (ln(1− ŷi ))
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The Derivative of BCE

BCE is useful because it has the same solution as MSE, without
allowing the sigmoid to suffer from vanishing gradients. Suppose
ŷi = σ(ξi ).

∂L
∂ξi

= −1

n

(
yi
∂ lnσ(ξi )

∂ξi
+ (1− yi )

∂ ln(1− σ(ξi ))

∂ξi

)
= −1

n

(
yi
σ̇(ξi )

σ(ξi )
− (1− yi )

1− σ̇(ξi )

1− σ(ξi )

)
= −1

n

(
yi
ŷi (1− ŷi )

ŷi
− (1− yi )

ŷi (1− ŷi )

1− ŷi

)
= −1

n
(yi − ŷi )

where the last line is true because yi ∈ {0, 1}.
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Multinomial Classifier

Suppose, instead of just a 2-class classifier, we want the neural
network to classify ~x as being one of K different classes. There are
many ways to encode this, but one of the best is

~y =


y1

y2
...
yK

 , yk =

{
1 k = k∗ (k is the correct class)

0 otherwise

A vector ~y like this is called a “one-hot vector,” because it is a
binary vector in which only one of the elements is nonzero (“hot”).
This is useful because minimizing the MSE loss gives:

ŷ =


ŷ1

ŷ2
...
ŷK

 =


p̂
Y1|~X (1|~x)

p̂
Y2|~X (1|~x)

...
p̂
YK |~X

(1|~x)

 ,
where the global optimum of p̂

Yk |~X
(y |~x)→ p

Yk |~X
(y |~x) as n→∞.
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One-hot vectors and Cross-entropy loss

The cross-entropy loss, for a training database coded with one-hot
vectors, is

LCE = −1

n

n∑
i=1

K∑
k=1

yki ln ŷki

This is useful because:

1 Like MSE, Cross-Entropy has an asymptotic global
optimum at: ŷk → p

Yk |~X
(1|~x).

2 Unlike MSE, Cross-Entropy with a softmax nonlinearity
suffers no vanishing gradient problem.
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Softmax Nonlinearity

The multinomial cross-entropy loss is only well-defined if
0 < ŷki < 1, and it is only well-interpretable if

∑
k ŷki = 1. We can

guarantee these two properties by setting

ŷk = softmax
k

(
W~h

)
=

exp(w̄k
~h)∑K

`=1 exp(w̄`~h)
,

where w̄k is the kth row of the W matrix.
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Sigmoid is a special case of Softmax!

softmax
k

(
W~h

)
=

exp(w̄k
~h)∑K

`=1 exp(w̄`~h)
.

Notice that, in the 2-class case, the softmax is just exactly a
logistic sigmoid function:

softmax
1

(W~h) =
ew̄1

~h

ew̄1
~h + ew̄2

~h
=

1

1 + e−(w̄1−w̄2)~h
= σ

(
(w̄1 − w̄2)~h

)
so everything that you’ve already learned about the sigmoid applies
equally well here.
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The Total Derivative Rule

The total derivative rule says that the derivative of the output
with respect to any one input can be computed as the sum of
partial times total, summed across all paths from input to output:

∂y(x , z)

∂x
=

(
dy

dg

)(
∂g(x , z)

∂x

)
+

(
dy

dh

)(
∂h(g , x , z)

∂x

)

x

z

g

h

u

v

y
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The Back-Propagation Algorithm

W (2) ←W (2) − η∇W (2)L, W (1) ←W (1) − η∇W (1)L

∇W (2)L =
n∑

i=1

∇~ξ(2)
i

L~hTi , ∇W (1)L =
n∑

i=1

∇~ξ(1)
i

L~xTi

∇~ξ(2)
i

L =
1

n
(ŷi − ~yi ), ∇~ξ(1)

i

L = σ̇(~ξ
(1)
i )�W (2),T∇~ξ(2)

i

L
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Derivative of a sigmoid

The derivative of a sigmoid is pretty easy to calculate:

h = σ(ξ) =
1

1 + e−ξ
,

dh

dξ
= σ̇(ξ) =

e−ξ

(1 + e−ξ)2

An interesting fact that’s extremely useful, in computing
back-prop, is that if h = σ(ξ), then we can write the derivative in
terms of h, without any need to store ξ:

dσ

dξ
=

e−ξ

(1 + e−ξ)2

=

(
1

1 + e−ξ

)(
e−ξ

1 + e−ξ

)
=

(
1

1 + e−ξ

)(
1− 1

1 + e−ξ

)
= σ(ξ)(1− σ(ξ))

= h(1− h)
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Step function and its derivative

The derivative of the step
function is the Dirac delta,
which is not very useful in
backprop.

Logistic function and its derivative
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Signum and Tanh

The signum function is a signed binary nonlinearity. It is used if,
for some reason, you want your output to be h ∈ {−1, 1}, instead
of h ∈ {0, 1}:

sign(b) =

{
−1 b < 0

1 b > 0

It is usually approximated by the hyperbolic tangent function
(tanh), which is just a scaled shifted version of the sigmoid:

h = tanh(ξ) =
eξ − e−ξ

eξ + e−ξ
=

1− e−2ξ

1 + e−2ξ
= 2σ(2ξ)− 1

and which has a scaled version of the sigmoid derivative:

d tanh(ξ)

dξ
=
(
1− tanh2(ξ)

)
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Signum function and its derivative

The derivative of the signum
function is the Dirac delta,
which is not very useful in
backprop.

Tanh function and its derivative
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A solution to the vanishing gradient problem: ReLU

The most ubiquitous solution to the vanishing gradient problem is
to use a ReLU (rectified linear unit) instead of a sigmoid. The
ReLU is given by

ReLU(ξ) =

{
b ξ ≥ 0

0 ξ ≤ 0,

and its derivative is
dReLU(ξ)

d(ξ)
= u(ξ)
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How to achieve shift invariance: Convolution

Instead of using vectors as layers, let’s use images.

ξ(l)[m, n, d ] =
∑
c

∑
m′

∑
n′

w (l)[m′, n′, c , d ]h(l−1)[m −m′, n − n′, c]

where

ξ(l)[m, n, c] and h(l)[m, n, c] are excitation and activation
(respectively) of the (m, n)th pixel, in the cth channel, in the
l th layer.

w (l)[m, n, c , d ] are weights connecting cth input channel to
d th output channel, with a shift of m rows, n column.
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Convolution forward, Correlation backward

In signal processing, we defined x [n] ∗ h[n] to mean∑
h[m]x [n −m]. Let’s use the same symbol to refer to this

multi-channel 2D convolution:

ξ(l)[m, n, d ] =
∑
c

∑
m′

∑
n′

w (l)[m −m′, n − n′, c, d ]h(l−1)[m′, n′, c]

≡ w (l)[m, n, c , d ] ∗ h(l−1)[m, n, c]

Back-prop, then, is also a kind of convolution, but with the filter
flipped left-to-right and top-to-bottom. Flipped convolution is also
known as “correlation.”

∂L
∂h(l−1)[m′, n′, c]

=
∑
m

∑
n

∑
c

w (l)[m −m′, n − n′, c , d ]
dL

dξ(l)[m, n, d ]

= w (l)[−m′,−n′, c , d ] ∗ dL
dξ(l)[m′, n′, d ]
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Max Pooling

Philosophy: the activation h(l)[m, n, c] should be greater than
zero if the corresponding feature is detected anywhere within
the vicinity of pixel (m, n). In fact, let’s look for the best
matching input pixel.

Equation:

h(l)[m, n, c] =
M−1
max
m′=0

M−1
max
n′=0

ReLU
(
ξ(l)[mM + m′, nM + n′, c]

)
where M is a max-pooling factor (often M = 2, but not
always).
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Back-Prop for Max Pooling

The back-prop is pretty easy to understand. The activation
gradient, dL

dh(l)[m,n,c]
, is back-propagated to just one of the

excitation gradients in its pool: the one that had the maximum
value.

dL
dξ(l)[mM + m′, nM + n′, c]

=


dL

dh(l)[m,n,c]

m′ = m∗, n′ = n∗,

h(l)[m, n, c] > 0,

0 otherwise,

where
m∗, n∗ = argmax

m′,n′
ξ(l)[mM + m′, nM + n′, c],
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Object Detection as Classification

Suppose that we are given a region of interest, ROI = (x , y ,w , h),
and asked to decide whether the ROI is an object. We can do this
by training a neural network to estimate the classifier output:

yc(ROI ) =

{
1 ROI contains an object

0 ROI does not contain an object

A neural net trained with MSE or CE will then compute

ŷc = Pr (ROI contains an object)
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Intersection over union (IOU)

We deal with partial-overlap by putting some sort of threshold on
the intersection-over-union measure. Suppose the hypothesis is
(xROI , yROI ,wROI , hROI ), and the reference is
(xREF , yREF ,wREF , hREF ), then IOU is

IOU =
I

U
=

number of pixels in both ROI and REF

number of pixels in either ROI or REF
,

where the intersection between REF and ROI is:

I = (min (xREF + wREF , xROI + wROI )−max (xREF , xROI ))×
(min (yREF + hREF , yROI + hROI )−max (yREF , yROI )) ,

and their union is:

U = wREFhREF + wROIhROI − I
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What pixels should be covered?

The ROI is (xROI , yROI ,wROI , hROI ).

The anchor is (xa, ya,wa, ha).

The true object is located at (xREF , yREF ,wREF , hREF ).

The regression target is:

~yr =


xREF−xa

wa
yREF−ya

ha

ln
(
wREF
wa

)
ln
(
hREF
ha

)
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Training a bbox regression network

The network is now trained with two different outputs, ŷc and ŷr .
The total loss is

L = Lc + Lr
where Lc is BCE for the classifier output:

Lc = −1

n

n∑
i=1

(yc,i ln ŷc,i + (1− yc,i ) ln(1− ŷc,i ))

and Lr is zero if yc = 0 (no object present), and MSE if yc = 1:

Lr =
1

2

∑n
i=1 yc,i‖~yr ,i − ŷr ,i‖2∑n

i=1 yc,i
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Flow Graphs

x

h0

h1

ŷ

We often show the flow graph for the chain rule using bubbles and
arrows, as shown above. You can imagine the chain rule as taking
a summation along any cut through the flow graph—for example,
the dashed line shown above. You take the total derivative from ŷ
to the cut, and then the partial derivative from there back to x .

dŷ

dx
=

N−1∑
i=0

dŷ

dhi

∂hi
∂x
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Flow Graphs

x

h0

h1

ŷ

d ŷ

dx
=

N−1∑
i=0

dŷ

dhi

∂hi
∂x

For each hi , we find the total derivative of ŷ w.r.t. hi , multiplied
by the partial derivative of hi w.r.t. x .
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Recurrent Neural Net (RNN) = Nonlinear(IIR)

h[n] = σ

(
x [n] +

M−1∑
m=1

w [m]h[n −m]

)
The coefficients, w [m], are chosen to minimize the loss function.
For example, suppose that the goal is to make h[n] resemble a
target signal y [n]; then we might use

L =
1

2

N∑
n=0

(h[n]− y [n])2

and choose

w [m]← w [m]− η dL
dw [m]
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x [0] . . . x [n] x[n + 1] . . . x [T ]

h[0] . . . h[n] h[n + 1] . . . h[T ]

L

Here’s a flow diagram that could represent:

h[n] = g

(
x [n] +

∞∑
m=0

w [m]h[n −m]

)

L =
1

2

∑
n

(y [n]− h[n])2
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x [0] . . . x [n] x[n + 1] . . . x [T ]

h[0] . . . h[n] h[n + 1] . . . h[T ]

L

Back-propagation through time does this:

dL
dh[n]

=
∂L
∂h[n]

+
T−n∑
m=1

dL
dh[n + m]

∂h[n + m]

∂h[n]
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Long Short-Term Memory (LSTM)

The three gates are:

1 The cell remembers the past only when the forget gate is on,
f [t] = 1.

2 The cell accepts input only when the input gate is on, i [t] = 1.

c[t] = f [t]c[t − 1] + i [t]σh (wcx [t] + uch[t − 1] + bc)

3 The cell is output only when the output gate is on, o[t] = 1.

h[t] = o[t]c[t]
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Neural Network Model: LSTM

i [t] = input gate = σ(wix [t] + uih[t − 1] + bi )

o[t] = output gate = σ(wox [t] + uoh[t − 1] + bo)

f [t] = forget gate = σ(wf x [t] + uf h[t − 1] + bf )

c[t] = memory cell = f [t]c[t − 1] + i [t]tanh (wcx [t] + uch[t − 1] + bc)

h[t] = output = o[t]c[t]
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Back-Prop Through Time

dL
dh[t]

=
∂L
∂h[t]

+
∑

ξ∈{i ,o,f ,c}

dL
dξ[t + 1]

∂ξ[t + 1]

∂h[t]
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Back-Prop Through Time

Back-propagation for all of the other variables is easier, since only
c[t] has any direct connection from the current time to the next
time:

dL
dc[t]

=
dL
dh[t]

∂h[t]

∂c[t]
+

dL
dc[t + 1]

∂c[t + 1]

∂c[t]

dL
do[t]

=
dL
dh[t]

∂h[t]

∂o[t]

dL
di [t]

=
dL
dc[t]

∂c[t]

∂i [t]

dL
df [t]

=
dL
dc[t]

∂c[t]

∂f [t]
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