
Review Vanishing Gradient Example RNN Forget Gate LSTM Backprop Weight Gradient Conclusion

Lecture 24: Long/Short-Term Memory

Mark Hasegawa-Johnson

University of Illinois

ECE 417: Multimedia Signal Processing

Review Vanishing Gradient Example RNN Forget Gate LSTM Backprop Weight Gradient Conclusion

1 Review: Recurrent Neural Networks

2 Vanishing/Exploding Gradient

3 Running Example: a Pocket Calculator

4 Regular RNN

5 Forget Gate

6 Long Short-Term Memory (LSTM)

7 Backprop for an LSTM

8 Weight Gradient for an LSTM

9 Conclusion

Review Vanishing Gradient Example RNN Forget Gate LSTM Backprop Weight Gradient Conclusion

Outline

1 Review: Recurrent Neural Networks

2 Vanishing/Exploding Gradient

3 Running Example: a Pocket Calculator

4 Regular RNN

5 Forget Gate

6 Long Short-Term Memory (LSTM)

7 Backprop for an LSTM

8 Weight Gradient for an LSTM

9 Conclusion

Review Vanishing Gradient Example RNN Forget Gate LSTM Backprop Weight Gradient Conclusion

Review: Partial and Total Derivatives

The total derivative symbol, dL
dhk

, always means the same
thing: derivative including the contributions of all paths from
hk to L.

The partial derivative symbol, ∂L
∂hk

, can mean different
things in different equations (because different equations
might hold constant a different set of other variables).

There is a notation we can use to specify which other
variables are being held constant: ∂L

∂hk
(ŷ1, ŷ6, ŷ10, h1, . . . , hN)

means “hold ŷ1, ŷ6, ŷ10, and h1, . . . , hk−1, hk+1, . . . , hN
constant.”

Review Vanishing Gradient Example RNN Forget Gate LSTM Backprop Weight Gradient Conclusion

Back-Propagation in terms of Flow Graphs

x

h0

h1

ŷ

In order to find the derivative of an output w.r.t. any intermediate
variables, one strategy that works is:

1 Draw a dashed line across the graph just downstream of the
desired intermediate variables.

2 Apply the chain rule, with a summation across all edges that
cross the dashed line.

Review Vanishing Gradient Example RNN Forget Gate LSTM Backprop Weight Gradient Conclusion

Back-Propagation in terms of Flow Graphs

x

h0

h1

ŷ

∂ŷ

∂h0
(x , h0) =

dŷ

dh1

∂h1
∂h0

(x , h0, h1) +
dŷ

dŷ

∂ŷ

∂h0
(x , h0, h1)

∂ŷ

∂x
(x , h0) =

dŷ

dh1

∂h1
∂x

(x , h0, h1) +
dŷ

dŷ

∂ŷ

∂x
(x , h0, h1)

Notice: ∂ŷ
∂x (x , h0) does not include dŷ

dh0
∂h0
∂x .

Review Vanishing Gradient Example RNN Forget Gate LSTM Backprop Weight Gradient Conclusion

Back-Propagation Through Time

x [0] . . . x [n] x[n+ 1] . . . x [T]

h[0] . . . h[n] h[n+ 1] . . . h[T]

L

dL
dh[n]

=
∂L
∂h[n]

+
T−n∑
m=1

dL
dh[n + m]

∂h[n + m]

∂h[n]

Review Vanishing Gradient Example RNN Forget Gate LSTM Backprop Weight Gradient Conclusion

Outline

1 Review: Recurrent Neural Networks

2 Vanishing/Exploding Gradient

3 Running Example: a Pocket Calculator

4 Regular RNN

5 Forget Gate

6 Long Short-Term Memory (LSTM)

7 Backprop for an LSTM

8 Weight Gradient for an LSTM

9 Conclusion

Review Vanishing Gradient Example RNN Forget Gate LSTM Backprop Weight Gradient Conclusion

Vanishing/Exploding Gradient

The “vanishing gradient” problem refers to the tendency of
dh[n+m]
dh[n] to disappear, exponentially, when m is large.

The “exploding gradient” problem refers to the tendency of
dh[n+m]
dh[n] to explode toward infinity, exponentially, when m is

large.

If the largest feedback coefficient is |w [m]| > 1, then you get
exploding gradient. If |w [m]| < 1, you get vanishing gradient.

Review Vanishing Gradient Example RNN Forget Gate LSTM Backprop Weight Gradient Conclusion

Example: A Memorizer Network

Suppose that we have a very simple RNN:

h[n] = wx [n] + uh[n − 1]

Suppose that x [n] is only nonzero at time 0:

x [n] =

{
x0 n = 0

0 n 6= 0

Suppose that, instead of measuring x [0] directly, we are only
allowed to measure the output of the RNN m time-steps later. Our
goal is to learn w and u so that h[m] remembers x0, thus:

L =
1

2
(h[m]− x0)2

Review Vanishing Gradient Example RNN Forget Gate LSTM Backprop Weight Gradient Conclusion

Example: A Memorizer Network

Now, how do we perform gradient update of the weights? If

h[n] = wx [n] + uh[n − 1]

then

dL
dw

=
∑
n

(
dL
dh[n]

)
∂h[n]

∂w

=
∑
n

(
dL
dh[n]

)
x [n] =

(
dL
dh[0]

)
x0

But the error is defined as

L =
1

2
(h[m]− x0)2

so

dL
dh[0]

= u
dL
dh[1]

= u2
dL
dh[2]

= . . . = um (h[m]− x0)

Review Vanishing Gradient Example RNN Forget Gate LSTM Backprop Weight Gradient Conclusion

Example: Vanishing Gradient

So we find out that the gradient,
w.r.t. the coefficient w , is either
exponentially small, or
exponentially large, depending on
whether |u| < 1 or |u| > 1:

dL
dw

= x0 (h[m]− x0) um

In other words, if our application
requires the neural net to wait m
time steps before generating its
output, then the gradient is
exponentially smaller, and
therefore training the neural net is
exponentially harder.

Exponential Decay

Image CC-SA-3.0, PeterQ, Wikipedia

Review Vanishing Gradient Example RNN Forget Gate LSTM Backprop Weight Gradient Conclusion

Outline

1 Review: Recurrent Neural Networks

2 Vanishing/Exploding Gradient

3 Running Example: a Pocket Calculator

4 Regular RNN

5 Forget Gate

6 Long Short-Term Memory (LSTM)

7 Backprop for an LSTM

8 Weight Gradient for an LSTM

9 Conclusion

Review Vanishing Gradient Example RNN Forget Gate LSTM Backprop Weight Gradient Conclusion

Notation

Today’s lecture will try to use notation similar to the Wikipedia
page for LSTM.

x [t] = input at time t

y [t] = target/desired output

c[t] = LSTM memory cell

h[t] = LSTM output

u = feedback coefficient

w = feedforward coefficient

b = bias

Review Vanishing Gradient Example RNN Forget Gate LSTM Backprop Weight Gradient Conclusion

Running Example: a Pocket Calculator

The rest of this lecture will refer to a toy application called
“pocket calculator.”

Pocket Calculator

When x [t] > 0, add it to the current tally:
c[t] = c[t − 1] + x [t].

When x [t] = 0,
1 Print out the current tally, h[t] = c[t − 1], and then
2 Reset the tally to zero, c[t] = 0.

Example Signals

Input: x [t] = 1, 2, 1, 0, 1, 1, 1, 0

Target Output: y [t] = 0, 0, 0, 4, 0, 0, 0, 3

Review Vanishing Gradient Example RNN Forget Gate LSTM Backprop Weight Gradient Conclusion

Pocket Calculator

When x [t] > 0, add it to
the current tally:
c[t] = c[t − 1] + x [t].

When x [t] = 0,
1 Print out the current

tally, h[t] = c[t − 1],
and then

2 Reset the tally to zero,
c[t] = 0.

Pocket Calculator

Review Vanishing Gradient Example RNN Forget Gate LSTM Backprop Weight Gradient Conclusion

Outline

1 Review: Recurrent Neural Networks

2 Vanishing/Exploding Gradient

3 Running Example: a Pocket Calculator

4 Regular RNN

5 Forget Gate

6 Long Short-Term Memory (LSTM)

7 Backprop for an LSTM

8 Weight Gradient for an LSTM

9 Conclusion

Review Vanishing Gradient Example RNN Forget Gate LSTM Backprop Weight Gradient Conclusion

One-Node One-Tap Linear RNN

Suppose that we have a very simple RNN:

Excitation: c[t] = x [t] + uh[t − 1]

Activation: h[t] = σh (c[t])

where σh() is some feedback nonlinearity. In this simple example,
let’s just use σh(c[t]) = c[t], i.e., no nonlinearity.
GOAL: Find u so that h[t] ≈ y [t]. In order to make the problem
easier, we will only score an “error” when y [t] 6= 0:

L =
1

2

∑
t:y [t]>0

(h[t]− y [t])2

Review Vanishing Gradient Example RNN Forget Gate LSTM Backprop Weight Gradient Conclusion

RNN: u = 1?

Obviously, if we want to just add
numbers, we should just set u = 1.
Then the RNN is computing

Excitation: c[t] = x [t] + h[t − 1]

Activation: h[t] = σh (c[t])

That works until the first
zero-valued input. But then it just
keeps on adding.

RNN with u = 1

Review Vanishing Gradient Example RNN Forget Gate LSTM Backprop Weight Gradient Conclusion

RNN: u = 0.5?

Can we get decent results using
u = 0.5?

Advantage: by the time we
reach x [t] = 0, the sum has
kind of leaked away from us
(c[t] ≈ 0), so a hard-reset is
not necessary.

Disadvantage: by the time we
reach x [t] = 0, the sum has
kind of leaked away from us
(h[t] ≈ 0).

RNN with u = 0.5

Review Vanishing Gradient Example RNN Forget Gate LSTM Backprop Weight Gradient Conclusion

Gradient Descent

c[t] = x [t] + uh[t − 1]

h[t] = σh (c[t])

Let’s try initializing u = 0.5, and then performing gradient descent
to improve it. Gradient descent has five steps:

1 Forward Propagation: c[t] = x [t] + uh[t − 1], h[t] = c[t].

2 Synchronous Backprop: ε[t] = ∂L/∂c[t].

3 Back-Prop Through Time: δ[t] = dL/dc[t].

4 Weight Gradient: dL/du =
∑

t δ[t]h[t − 1]

5 Gradient Descent: u ← u − ηdL/du

Review Vanishing Gradient Example RNN Forget Gate LSTM Backprop Weight Gradient Conclusion

Gradient Descent

Excitation: c[t] = x [t] + uh[t − 1]

Activation: h[t] = σh (c[t])

Error: L =
1

2

∑
t:y [t]>0

(h[t]− y [t])2

So the back-prop stages are:

Synchronous Backprop: ε[t] =
∂L
∂c[t]

=

{
(h[t]− y [t]) y [t] > 0
0 otherwise

BPTT: δ[t] =
dL
dc[t]

= ε[t] + uδ[t + 1]

Weight Gradient:
dL
du

=
∑
t

δ[t]h[t − 1]

Review Vanishing Gradient Example RNN Forget Gate LSTM Backprop Weight Gradient Conclusion

Backprop Stages

ε[t] =

{
(h[t]− y [t]) y [t] > 0
0 otherwise

δ[t] = ε[t] + uδ[t + 1]

dL
du

=
∑
t

δ[t]h[t − 1]

Backprop Stages, u = 0.5

Review Vanishing Gradient Example RNN Forget Gate LSTM Backprop Weight Gradient Conclusion

Vanishing Gradient and Exploding Gradient

Notice that, with |u| < 1, δ[t] tends to vanish exponentially
fast as we go backward in time. This is called the vanishing
gradient problem. It is a big problem for RNNs with long
time-dependency, and for deep neural nets with many layers.

If we set |u| > 1, we get an even worse problem, sometimes
called the exploding gradient problem.

Review Vanishing Gradient Example RNN Forget Gate LSTM Backprop Weight Gradient Conclusion

RNN, u = 1.7

c[t] = x [t] + uh[t − 1]

RNN, u = 1.7

δ[t] = ε[t] + uδ[t + 1]

Review Vanishing Gradient Example RNN Forget Gate LSTM Backprop Weight Gradient Conclusion

Outline

1 Review: Recurrent Neural Networks

2 Vanishing/Exploding Gradient

3 Running Example: a Pocket Calculator

4 Regular RNN

5 Forget Gate

6 Long Short-Term Memory (LSTM)

7 Backprop for an LSTM

8 Weight Gradient for an LSTM

9 Conclusion

Review Vanishing Gradient Example RNN Forget Gate LSTM Backprop Weight Gradient Conclusion

Hochreiter and Schmidhuber’s Solution: The Forget Gate

Instead of multiplying by the same weight, u, at each time step,
Hochreiter and Schmidhuber proposed: let’s make the feedback
coefficient a function of the input!

Excitation: c[t] = x [t] + f [t]h[t − 1]

Activation: h[t] = σh (c[t])

Forget Gate: f [t] = σg (wf x [t] + uf h[t − 1] + bf) ,

where σh() and σg () might be different nonlinearities. In particular,
it’s OK for σh() to be linear (σh(c) = c), but σg () should be
clipped so that 0 ≤ f [t] ≤ 1, in order to avoid gradient explosion.

Review Vanishing Gradient Example RNN Forget Gate LSTM Backprop Weight Gradient Conclusion

The Forget-Gate Nonlinearity

The forget gate is

f [t] = σg (wf x [t] + uf h[t − 1] + bf)

where σg () is some nonlinearity such that 0 ≤ σg () ≤ 1. Two such
nonlinearities are worth knowing about.

Review Vanishing Gradient Example RNN Forget Gate LSTM Backprop Weight Gradient Conclusion

Forget-Gate Nonlinearity #1: CReLU

The first useful nonlinearity is the CReLU (clipped rectified linear
unit), defined as

σg (wf x + uf h + bf) = min (1,max (0,wf x + uf h + bf))

The CReLU is particularly useful for knowledge-based
design. That’s because σ(1) = 1 and σ(0) = 0, so it is
relatively easy to design the weights wf , uf , and bf to get the
results you want.

The CReLU is not very useful, though, if you want to choose
your weights using gradient descent. What usually happens
is that wf grows larger and larger for the first 2-3 epochs of
training, and then suddenly wf is so large that
σ̇(wf x + uf h + bf) = 0 for all training tokens. At that point,
the gradient is dL/dw = 0, so further gradient-descent
training is useless.

Review Vanishing Gradient Example RNN Forget Gate LSTM Backprop Weight Gradient Conclusion

Forget-Gate Nonlinearity #1: Logistic Sigmoid

The second useful nonlinearity is the logistic sigmoid, defined as:

σg (wf x + uf h + bf) =
1

1 + e−(wf x+uf h+bf)

The logistic sigmoid is particularly useful for gradient
descent. That’s because its gradient is defined for all values
of wf . In fact, it has a really simple form, that can be written
in terms of the output: σ̇ = σ(1− σ).

The logistic sigmoid is not as useful for knowledge-based
design. That’s because 0 < σ < 1: as x → −∞, σ(x)→ 0,
but it never quite reaches it. Likewise as x →∞, σ(x)→ 1,
but it never quite reaches it.

Review Vanishing Gradient Example RNN Forget Gate LSTM Backprop Weight Gradient Conclusion

Pocket Calculator

When x [t] > 0,
accumulate the input, and
print out nothing.

When x [t] = 0, print out
the accumulator, then
reset.

. . . but the “print out nothing”
part is not scored, only the
accumulation. Furthermore,
nonzero input is always
x [t] ≥ 1.

Review Vanishing Gradient Example RNN Forget Gate LSTM Backprop Weight Gradient Conclusion

Pocket Calculator

With zero error, we can
approximate the pocket
calculator as

When x [t] ≥ 1,
accumulate the input.

When x [t] = 0, print out
the accumulator, then
reset.

L = 1
2

∑
t:y [t]>0 (h[t]− y [t])2 = 0

Review Vanishing Gradient Example RNN Forget Gate LSTM Backprop Weight Gradient Conclusion

Forget-Gate Implementation of the Pocket Calculator

It seems like we can approximate the pocket calculator as:

When x [t] ≥ 1, accumulate the input: c[t] = x [t] + h[t − 1].

When x [t] = 0, print out the accumulator, then reset:
c[t] = x [t].

So it seems that we just want the forget gate set to

f [t] =

{
1 x [t] ≥ 1
0 x [t] = 0

This can be accomplished as

f [t] = CReLU (x [t]) = max (0,min (1, x [t]))

Review Vanishing Gradient Example RNN Forget Gate LSTM Backprop Weight Gradient Conclusion

Forget Gate Implementation of
the Pocket Calculator

c[t] = x [t] + f [t]h[t − 1]

h[t] = c[t]

f [t] = CReLU (x [t])

. . . but the error is large!

Forward Prop

Review Vanishing Gradient Example RNN Forget Gate LSTM Backprop Weight Gradient Conclusion

What Went Wrong?

The forget gate correctly turned itself on (remember the past)
when x [t] > 0, and turned itself off (forget the past) when
x [t] = 0.

Unfortunately, we don’t want to forget the past when
x [t] = 0. We want to forget the past on the next time step
after x [t] = 0.

Coincidentally, we also don’t want any output when x [t] > 0.
The error criterion doesn’t score those samples, but maybe it
should.

Review Vanishing Gradient Example RNN Forget Gate LSTM Backprop Weight Gradient Conclusion

Outline

1 Review: Recurrent Neural Networks

2 Vanishing/Exploding Gradient

3 Running Example: a Pocket Calculator

4 Regular RNN

5 Forget Gate

6 Long Short-Term Memory (LSTM)

7 Backprop for an LSTM

8 Weight Gradient for an LSTM

9 Conclusion

Review Vanishing Gradient Example RNN Forget Gate LSTM Backprop Weight Gradient Conclusion

Review Vanishing Gradient Example RNN Forget Gate LSTM Backprop Weight Gradient Conclusion

Long Short-Term Memory (LSTM)

The LSTM solves those problems by defining two types of memory,
and three types of gates. The two types of memory are

1 The “cell,” c[t], corresponds to the excitation in an RNN.

2 The “output” or “prediction,” h[t], corresponds to the
activation in an RNN.

The three gates are:

1 The cell remembers the past only when the forget gate is on,
f [t] = 1.

2 The cell accepts input only when the input gate is on, i [t] = 1.

3 The cell is output only when the output gate is on, o[t] = 1.

Review Vanishing Gradient Example RNN Forget Gate LSTM Backprop Weight Gradient Conclusion

Long Short-Term Memory (LSTM)

The three gates are:

1 The cell remembers the past only when the forget gate is on,
f [t] = 1.

2 The cell accepts input only when the input gate is on, i [t] = 1.

c[t] = f [t]c[t − 1] + i [t]σh (wcx [t] + uch[t − 1] + bc)

3 The cell is output only when the output gate is on, o[t] = 1.

h[t] = o[t]c[t]

Review Vanishing Gradient Example RNN Forget Gate LSTM Backprop Weight Gradient Conclusion

Characterizing Human Memory

LONG
TERM

SHORT
TERM

INPUT GATE

OUTPUT GATE

PERCEPTION

ACTION

Pr {remember} = pLTMe−t/TLTM + (1− pLTM)e−t/TSTM

Review Vanishing Gradient Example RNN Forget Gate LSTM Backprop Weight Gradient Conclusion

When Should You Remember?

c[t] = f [t]c[t − 1] + i [t]σh (wcx [t] + uch[t − 1] + bc)

h[t] = o[t]c[t]

1 The forget gate is a function of current input and past output,
f [t] = σg (wf x [t] + uf h[t − 1] + bf)

2 The input gate is a function of current input and past output,
i [t] = σg (wix [t] + uih[t − 1] + bi)

3 The output gate is a function of current input and past
output, o[t] = σg (wox [t] + uoh[t − 1] + bo)

Review Vanishing Gradient Example RNN Forget Gate LSTM Backprop Weight Gradient Conclusion

Neural Network Model: LSTM

i [t] = input gate = σ(wix [t] + uih[t − 1] + bi)

o[t] = output gate = σ(wox [t] + uoh[t − 1] + bo)

f [t] = forget gate = σ(wf x [t] + uf h[t − 1] + bf)

c[t] = memory cell = f [t]c[t − 1] + i [t]tanh (wcx [t] + uch[t − 1] + bc)

h[t] = output = o[t]c[t]

Review Vanishing Gradient Example RNN Forget Gate LSTM Backprop Weight Gradient Conclusion

Example: Pocket Calculator

c[t] = f [t]c[t − 1] + i [t]x [t]

i [t] = 1 always

h[t] = o[t]c[t]

o[t] =

{
1 x [t] == 0

0 x [t] ≥ 1

f [t] =

{
1 h[t − 1] ≥ 1

0 h[t − 1] == 0

Forward Prop

Review Vanishing Gradient Example RNN Forget Gate LSTM Backprop Weight Gradient Conclusion

Example: Pocket Calculator

c[t] = f [t]c[t − 1] + i [t]x [t]

i [t] = CReLU(1)

h[t] = o[t]c[t]

o[t] = CReLU(1− x [t])

f [t] = CReLU(1− h[t − 1])

Forward Prop

Review Vanishing Gradient Example RNN Forget Gate LSTM Backprop Weight Gradient Conclusion

Outline

1 Review: Recurrent Neural Networks

2 Vanishing/Exploding Gradient

3 Running Example: a Pocket Calculator

4 Regular RNN

5 Forget Gate

6 Long Short-Term Memory (LSTM)

7 Backprop for an LSTM

8 Weight Gradient for an LSTM

9 Conclusion

Review Vanishing Gradient Example RNN Forget Gate LSTM Backprop Weight Gradient Conclusion

Backprop for a normal RNN

In a normal RNN, each epoch of gradient descent has five steps:

1 Forward-prop: find the node excitation and activation,
moving forward through time.

2 Synchronous backprop: find the partial derivative of error
w.r.t. node excitation at each time, assuming all other time
steps are constant.

3 Back-prop through time: find the total derivative of error
w.r.t. node excitation at each time.

4 Weight gradient: find the total derivative of error w.r.t.
each weight and each bias.

5 Gradient descent: adjust each weight and bias in the
direction of the negative gradient

Review Vanishing Gradient Example RNN Forget Gate LSTM Backprop Weight Gradient Conclusion

Backprop for an LSTM

An LSTM differs from a normal RNN in that, instead of just one
memory unit at each time step, we now have two memory units
and three gates. Each of them depends on the previous time-step.
Since there are so many variables, let’s stop back-propagating to
excitations. Instead, we’ll just back-prop to compute the derivative
of the error w.r.t. each of the variables:

δh[t] =
dL
dh[t]

, δc [t] =
dL
dc[t]

, δi [t] =
dL
di [t]

, δo [t] =
dL
do[t]

, δf [t] =
dL
df [t]

The partial derivatives are easy, though. Error can’t depend
directly on any of the internal variables; it can only depend
directly on the output, h[t]:

εh[t] =
∂L
∂h[t]

Review Vanishing Gradient Example RNN Forget Gate LSTM Backprop Weight Gradient Conclusion

Backprop for an LSTM

In an LSTM, we’ll implement each epoch of gradient descent with
five steps:

1 Forward-prop: find all five of the variables at each time step,
moving forward through time.

2 Synchronous backprop: find the partial derivative of error
w.r.t. h[t].

3 Back-prop through time: find the total derivative of error
w.r.t. each of the five variables at each time, starting with
h[t].

4 Weight gradient: find the total derivative of error w.r.t.
each weight and each bias.

5 Gradient descent: adjust each weight and bias in the
direction of the negative gradient

Review Vanishing Gradient Example RNN Forget Gate LSTM Backprop Weight Gradient Conclusion

Synchronous Back-Prop: the Output

Suppose the error term is

L =
1

2

∞∑
t=−∞

(h[t]− y [t])2

Then the first step, in back-propagation, is to calculate the partial
derivative w.r.t. the prediction term h[t]:

εh[t] =
∂L
∂h[t]

= h[t]− y [t]

Review Vanishing Gradient Example RNN Forget Gate LSTM Backprop Weight Gradient Conclusion

Synchronous Back-Prop: the other variables

Remember that the error is defined only in terms of the output,
h[t]. So, actually, partial derivatives with respect to the other
variables are all zero!

εi [t] =
∂L
∂i [t]

= 0

εo [t] =
∂L
∂o[t]

= 0

εf [t] =
∂L
∂f [t]

= 0

εc [t] =
∂L
∂c[t]

= 0

Review Vanishing Gradient Example RNN Forget Gate LSTM Backprop Weight Gradient Conclusion

Back-Prop Through Time

Back-prop through time is really tricky in an LSTM, because four
of the five variables depend on the previous time step, either on
h[t − 1] and/or c[t − 1]:

i [t] = σg (wix [t] + uih[t − 1] + bi)

o[t] = σg (wox [t] + uoh[t − 1] + bo)

f [t] = σg (wf x [t] + uf h[t − 1] + bf)

c[t] = f [t]c[t − 1] + i [t]σh (wcx [t] + uch[t − 1] + bc)

h[t] = o[t]c[t]

Review Vanishing Gradient Example RNN Forget Gate LSTM Backprop Weight Gradient Conclusion

Back-Prop Through Time

Taking the partial derivative of each variable at time t w.r.t. the
variables at time t − 1, we get

∂i [t]

∂h[t − 1]
= σ̇g (wix [t] + uih[t − 1] + bi)ui

∂o[t]

∂h[t − 1]
= σ̇g (wox [t] + uoh[t − 1] + bo)uo

∂f [t]

∂h[t − 1]
= σ̇g (wf x [t] + uf h[t − 1] + bf)uf

∂c[t]

∂h[t − 1]
= i [t]σ̇h (wcx [t] + uch[t − 1] + bc) uc

∂c[t]

∂c[t − 1]
= f [t]

Review Vanishing Gradient Example RNN Forget Gate LSTM Backprop Weight Gradient Conclusion

Back-Prop Through Time

We can then combine all of those together to get:

dL
dh[t]

=
∂L
∂h[t]

+
∑

ξ∈{i ,o,f ,c}

dL
dξ[t + 1]

∂ξ[t + 1]

∂h[t]

Review Vanishing Gradient Example RNN Forget Gate LSTM Backprop Weight Gradient Conclusion

Back-Prop Through Time

Back-propagation for all of the other variables is easier, since only
c[t] has any direct connection from the current time to the next
time:

dL
dc[t]

=
dL
dh[t]

∂h[t]

∂c[t]
+

dL
dc[t + 1]

∂c[t + 1]

∂c[t]

dL
do[t]

=
dL
dh[t]

∂h[t]

∂o[t]

dL
di [t]

=
dL
dc[t]

∂c[t]

∂i [t]

dL
df [t]

=
dL
dc[t]

∂c[t]

∂f [t]

Review Vanishing Gradient Example RNN Forget Gate LSTM Backprop Weight Gradient Conclusion

Outline

1 Review: Recurrent Neural Networks

2 Vanishing/Exploding Gradient

3 Running Example: a Pocket Calculator

4 Regular RNN

5 Forget Gate

6 Long Short-Term Memory (LSTM)

7 Backprop for an LSTM

8 Weight Gradient for an LSTM

9 Conclusion

Review Vanishing Gradient Example RNN Forget Gate LSTM Backprop Weight Gradient Conclusion

Weight Gradient for an LSTM

Unlike BPTT, the weight gradient for an LSTM is really easy!
There are a lot of different weights, but each of them has an
influence on only one variable:

i [t] = σg (wix [t] + uih[t − 1] + bi)

o[t] = σg (wox [t] + uoh[t − 1] + bo)

f [t] = σg (wf x [t] + uf h[t − 1] + bf)

c[t] = f [t]c[t − 1] + i [t]σh (wcx [t] + uch[t − 1] + bc)

h[t] = o[t]c[t]

Review Vanishing Gradient Example RNN Forget Gate LSTM Backprop Weight Gradient Conclusion

Weight Gradient for an LSTM

Differentiating, we get:

∂L
∂wi

=
∑
t

dL
di [t]

σ̇g (·)x [t],
∂L
∂ui

=
∑
t

dL
di [t]

σ̇g (·)h[t − 1],

∂L
∂wo

=
∑
t

dL
do[t]

σ̇g (·)x [t],
∂L
∂uo

=
∑
t

dL
do[t]

σ̇g (·)h[t − 1],

∂L
∂wf

=
∑
t

dL
df [t]

σ̇g (·)x [t],
∂L
∂uf

=
∑
t

dL
df [t]

σ̇g (·)h[t − 1],

∂L
∂wc

=
∑
t

dL
dc[t]

i [t]σ̇h(·)x [t],
∂L
∂uc

=
∑
t

dL
dc[t]

i [t]σ̇h(·)h[t − 1]

Review Vanishing Gradient Example RNN Forget Gate LSTM Backprop Weight Gradient Conclusion

Outline

1 Review: Recurrent Neural Networks

2 Vanishing/Exploding Gradient

3 Running Example: a Pocket Calculator

4 Regular RNN

5 Forget Gate

6 Long Short-Term Memory (LSTM)

7 Backprop for an LSTM

8 Weight Gradient for an LSTM

9 Conclusion

Review Vanishing Gradient Example RNN Forget Gate LSTM Backprop Weight Gradient Conclusion

RNNs suffer from either exponentially decreasing memory (if
|w | < 1) or exponentially increasing memory (if |w | > 1).
This is one version of a more general problem sometimes
called the gradient vanishing problem.

The forget gate solves that problem by making the feedback
coefficient a function of the input.

LSTM defines two types of memory
(cell=excitation=“long-term memory,” and
output=activation=“short-term memory”), and three types of
gates (input, output, forget).

Review Vanishing Gradient Example RNN Forget Gate LSTM Backprop Weight Gradient Conclusion

Each epoch of LSTM training has the same steps as in a regular
RNN:

1 Forward propagation: find h[t].

2 Synchronous backprop: find the time-synchronous partial
derivatives ∂L

∂h[t] .

3 BPTT: find the total derivatives dL
dh[t] ,

dL
dc[t] ,

dL
do[t] ,

dL
df [t] , and

dL
di [t] .

4 Weight gradient: find the weight gradients ∂L
∂uf

and so on.

5 Gradient descent: update the weights, e.g.,

uf ← uf − η
∂L
∂uf

	Review: Recurrent Neural Networks
	Vanishing/Exploding Gradient
	Running Example: a Pocket Calculator
	Regular RNN
	Forget Gate
	Long Short-Term Memory (LSTM)
	Backprop for an LSTM
	Weight Gradient for an LSTM
	Conclusion

