
CNN/RNN Back-Prop Back-Prop BPTT Conclusion Example

Lecture 23: Recurrent Neural Nets

Mark Hasegawa-Johnson

ECE 417: Multimedia Signal Processing



CNN/RNN Back-Prop Back-Prop BPTT Conclusion Example

1 Nonlinear Time Invariant Filtering: CNN & RNN

2 Back-Propagation Review

3 Back-Propagation Training for CNN and RNN

4 Back-Prop Through Time

5 Conclusion

6 Written Example



CNN/RNN Back-Prop Back-Prop BPTT Conclusion Example

Outline

1 Nonlinear Time Invariant Filtering: CNN & RNN

2 Back-Propagation Review

3 Back-Propagation Training for CNN and RNN

4 Back-Prop Through Time

5 Conclusion

6 Written Example



CNN/RNN Back-Prop Back-Prop BPTT Conclusion Example

Convolutional Neural Net = Nonlinear(FIR)

Image CC-SA-4.0 by Aphex34, https://commons.wikimedia.org/wiki/File:Conv_layer.png

https://commons.wikimedia.org/wiki/File:Conv_layer.png


CNN/RNN Back-Prop Back-Prop BPTT Conclusion Example

Convolutional Neural Net = Nonlinear(FIR)

h[n] = σ

(
N−1∑
m=0

w [m]x [n −m]

)
The coefficients, w [m], are chosen to minimize some kind of loss
function. For example, suppose that the goal is to make h[n]
resemble a target signal y [n]; then we might use

L =
1

2

N∑
n=0

(h[n]− y [n])2

and choose

w [n]← w [n]− η dL
dw [n]



CNN/RNN Back-Prop Back-Prop BPTT Conclusion Example

Recurrent Neural Net (RNN) = Nonlinear(IIR)

Image CC-SA-4.0 by Ixnay,

https://commons.wikimedia.org/wiki/File:Recurrent_neural_network_unfold.svg

https://commons.wikimedia.org/wiki/File:Recurrent_neural_network_unfold.svg


CNN/RNN Back-Prop Back-Prop BPTT Conclusion Example

Recurrent Neural Net (RNN) = Nonlinear(IIR)

h[n] = σ

(
x [n] +

M−1∑
m=1

w [m]h[n −m]

)
The coefficients, w [m], are chosen to minimize the loss function.
For example, suppose that the goal is to make h[n] resemble a
target signal y [n]; then we might use

L =
1

2

N∑
n=0

(h[n]− y [n])2

and choose

w [m]← w [m]− η dL
dw [m]



CNN/RNN Back-Prop Back-Prop BPTT Conclusion Example

Outline

1 Nonlinear Time Invariant Filtering: CNN & RNN

2 Back-Propagation Review

3 Back-Propagation Training for CNN and RNN

4 Back-Prop Through Time

5 Conclusion

6 Written Example



CNN/RNN Back-Prop Back-Prop BPTT Conclusion Example

Flow Graphs

x

h0

h1

ŷ

Forward propagation can be summarized by a flow graph, which
specifies the dependencies among variables, without specifying the
functional form of the dependence. For example, the above graph
shows that

ŷ is a function of h0 and h1.

h1 is a function of x and h0.

h0 is a function of x .



CNN/RNN Back-Prop Back-Prop BPTT Conclusion Example

Review: Partial and Total Derivatives

The total derivative symbol, dL
dhk

, always means the same
thing: derivative including the contributions of all paths from
hk to L.

The partial derivative symbol, ∂L
∂hk

, can mean different
things in different equations (because different equations
might hold constant a different set of other variables).

There is a notation we can use to specify which other
variables are being held constant: ∂L

∂hk
(ŷ1, ŷ6, ŷ10, h1, . . . , hN)

means “hold ŷ1, ŷ6, ŷ10, and h1, . . . , hk−1, hk+1, . . . , hN
constant.”



CNN/RNN Back-Prop Back-Prop BPTT Conclusion Example

Back-Propagation in terms of Flow Graphs

x

h0

h1

ŷ

In order to find the derivative of an output w.r.t. any intermediate
variables, one strategy that works is:

1 Draw a dashed line across the graph just downstream of the
desired intermediate variables.

2 Apply the chain rule, with a summation across all edges that
cross the dashed line.



CNN/RNN Back-Prop Back-Prop BPTT Conclusion Example

Back-Propagation in terms of Flow Graphs

x

h0

h1

ŷ

∂ŷ

∂h0
(x , h0) =

dŷ

dh1

∂h1
∂h0

(x , h0, h1) +
dŷ

dŷ

∂ŷ

∂h0
(x , h0, h1)

∂ŷ

∂x
(x , h0) =

dŷ

dh1

∂h1
∂x

(x , h0, h1) +
dŷ

dŷ

∂ŷ

∂x
(x , h0, h1)

Notice: ∂ŷ
∂x (x , h0) does not include dŷ

dh0
∂h0
∂x .



CNN/RNN Back-Prop Back-Prop BPTT Conclusion Example

Fully-Connected Network

1 x1 x2 . . . xD

1 h1 h2 . . . hN

ŷ1 ŷ2 . . . ŷK

ŷ = h(~x ,W (1), ~b(1),W (2), ~b(2))

Back-Prop in a Fully-Connected
Network

∂L
∂hj

=
K∑

k=1

dL
dŷk

∂ŷk
∂hj



CNN/RNN Back-Prop Back-Prop BPTT Conclusion Example

Fully-Connected Network

1 x1 x2 . . . xD

1 h1 h2 . . . hN

ŷ1 ŷ2 . . . ŷK

ŷ = h(~x ,W (1), ~b(1),W (2), ~b(2))

Back-Prop in a Fully-Connected
Network

∂L
∂w

(1)
k,j

=
N∑
j=1

dL
dhj

∂hj

∂w
(1)
k,j



CNN/RNN Back-Prop Back-Prop BPTT Conclusion Example

Outline

1 Nonlinear Time Invariant Filtering: CNN & RNN

2 Back-Propagation Review

3 Back-Propagation Training for CNN and RNN

4 Back-Prop Through Time

5 Conclusion

6 Written Example



CNN/RNN Back-Prop Back-Prop BPTT Conclusion Example

Back-Prop in a CNN

Suppose we have a convolutional neural net, defined by

ξ[n] =
N−1∑
m=0

w [m]x [n −m]

h[n] = g (ξ[n])

then

∂L
∂w [m]

=
∑
n

dL
dξ[n]

∂ξ[n]

∂w [m]

=
∑
n

dL
dξ[n]

x [n −m]



CNN/RNN Back-Prop Back-Prop BPTT Conclusion Example

Back-Prop in an RNN

Suppose we have a recurrent neural net, defined by

ξ[n] = x [n] +
M−1∑
m=1

w [m]h[n −m]

h[n] = g (ξ[n])

then

∂L
∂w [m]

=
∑
n

dL
dξ[n]

∂ξ[n]

∂w [m]

=
∑
n

dL
dξ[n]

h[n −m]



CNN/RNN Back-Prop Back-Prop BPTT Conclusion Example

Outline

1 Nonlinear Time Invariant Filtering: CNN & RNN

2 Back-Propagation Review

3 Back-Propagation Training for CNN and RNN

4 Back-Prop Through Time

5 Conclusion

6 Written Example



CNN/RNN Back-Prop Back-Prop BPTT Conclusion Example

Partial vs. Full Derivatives

For example, suppose we want h[n] to be as close as possible to
some target signal y [n]:

L =
1

2

∑
n

(h[n]− y [n])2

Notice that L depends on h[n] in many different ways:

dL
dh[n]

=
∂L
∂h[n]

+
dL

dh[n + 1]

∂h[n + 1]

∂h[n]
+

dL
dh[n + 2]

∂h[n + 2]

∂h[n]
+ . . .



CNN/RNN Back-Prop Back-Prop BPTT Conclusion Example

Partial vs. Full Derivatives

In general,

dL
dh[n]

=
∂L
∂h[n]

+
∞∑

m=1

dL
dh[n + m]

∂h[n + m]

∂h[n]

where
dL
dh[n] is the total derivative, and includes all of the different

ways in which L depends on h[n].
∂h[n+m]
∂h[n] is the partial derivative, i.e., the change in h[n + m]

per unit change in h[n] if {h[n + 1], . . . , h[n + m − 1]} are all
held constant.



CNN/RNN Back-Prop Back-Prop BPTT Conclusion Example

x [0] . . . x [n] x[n+ 1] . . . x [T ]

h[0] . . . h[n] h[n+ 1] . . . h[T ]

L

Here’s a flow diagram that could represent:

h[n] = g

(
x [n] +

∞∑
m=0

w [m]h[n −m]

)

L =
1

2

∑
n

(y [n]− h[n])2



CNN/RNN Back-Prop Back-Prop BPTT Conclusion Example

x [0] . . . x [n] x[n+ 1] . . . x [T ]

h[0] . . . h[n] h[n+ 1] . . . h[T ]

L

Back-propagation through time does this:

dL
dh[n]

=
∂L
∂h[n]

+
T−n∑
m=1

dL
dh[n + m]

∂h[n + m]

∂h[n]



CNN/RNN Back-Prop Back-Prop BPTT Conclusion Example

Partial vs. Full Derivatives

So for example, if

L =
1

2

∑
n

(h[n]− y [n])2

then the partial derivative of L w.r.t. h[n] is

∂L
∂h[n]

= h[n]− y [n]

and the total derivative of L w.r.t. h[n] is

dL
dh[n]

= (h[n]− y [n]) +
∞∑

m=1

dL
dh[n + m]

∂h[n + m]

∂h[n]



CNN/RNN Back-Prop Back-Prop BPTT Conclusion Example

Partial vs. Full Derivatives

So for example, if

h[n] = g(ξ[n]), ξ[n] = x [n] +
M∑

m=1

w [m]h[n −m]

then the partial derivative of h[n + k] w.r.t. h[n] is

∂h[n + k]

∂h[n]
= ġ(ξ[n + k])w [k]

where we use the notation ġ(ξ) = dg
dξ .



CNN/RNN Back-Prop Back-Prop BPTT Conclusion Example

Synchronous Backprop vs. BPTT

The basic idea of back-prop-through-time is divide-and-conquer.

1 Synchronous Backprop: First, calculate the partial
derivative of L w.r.t. the excitation ξ[n] at time n, assuming
that all other time steps are held constant.

ε[n] =
∂L
∂ξ[n]

2 Back-prop through time: Second, iterate backward through
time to calculate the total derivative

δ[n] =
dL
dξ[n]



CNN/RNN Back-Prop Back-Prop BPTT Conclusion Example

Synchronous Backprop in an RNN

Suppose we have a recurrent neural net, defined by

ξ[n] = x [n] +
M∑

m=1

w [m]h[n −m]

h[n] = g (ξ[n])

L =
1

2

∑
n

(h[n]− y [n])2

then
∂L
∂h[n]

= (h[n]− y [n])



CNN/RNN Back-Prop Back-Prop BPTT Conclusion Example

Back-Prop Through Time (BPTT)

Suppose we have a recurrent neural net, defined by

ξ[n] = x [n] +
M∑

m=1

w [m]h[n −m]

h[n] = g (ξ[n])

L =
1

2

∑
n

(h[n]− y [n])2

then

dL
dh[n]

=
∂L
∂h[n]

+
∞∑

m=1

dL
dh[n + m]

∂h[n + m]

∂h[n]

=
∂L
∂h[n]

+
M∑

m=1

dL
dξ[n + m]

ġ(ξ[n + m])w [m]



CNN/RNN Back-Prop Back-Prop BPTT Conclusion Example

Weight Gradient

Suppose we have a recurrent neural net, defined by

ξ[n] = x [n] +
M∑

m=1

w [m]h[n −m]

h[n] = g (ξ[n])

L =
1

2

∑
n

(h[n]− y [n])2

then the weight gradient is given by

∂L
∂w [m]

(w [1], . . . ,w [M]) =
∑
n

dL
dh[n]

∂h[n]

∂w [m]
(w [1], . . . ,w [M])

=
∑
n

dL
dh[n]

ġ(ξ[n])h[n −m]



CNN/RNN Back-Prop Back-Prop BPTT Conclusion Example

Outline

1 Nonlinear Time Invariant Filtering: CNN & RNN

2 Back-Propagation Review

3 Back-Propagation Training for CNN and RNN

4 Back-Prop Through Time

5 Conclusion

6 Written Example



CNN/RNN Back-Prop Back-Prop BPTT Conclusion Example

Conclusions

Back-Prop, in general, is just the chain rule of calculus:

dL
dw

=
N−1∑
i=0

dL
dhi

∂hi
∂w

Convolutional Neural Networks are the nonlinear version of an
FIR filter. Coefficients are shared across time steps.
Recurrent Neural Networks are the nonlinear version of an IIR
filter. Coefficients are shared across time steps. Error is
back-propagated from every output time step to every input
time step.

dL
dh[n]

=
∂L
∂h[n]

+
M∑

m=1

dL
dh[n + m]

ġ(ξ[n + m])w [m]

∂L
∂w [m]

(w [1], . . . ,w [M]) =
∑
n

dL
dh[n]

ġ(ξ[n])h[n −m]



CNN/RNN Back-Prop Back-Prop BPTT Conclusion Example

Outline

1 Nonlinear Time Invariant Filtering: CNN & RNN

2 Back-Propagation Review

3 Back-Propagation Training for CNN and RNN

4 Back-Prop Through Time

5 Conclusion

6 Written Example



CNN/RNN Back-Prop Back-Prop BPTT Conclusion Example

Written Example

Suppose that ~h[t] = [h1[t], . . . , hN [t]]T is a vector, and suppose
that

~h[t] = tanh
(
U~x [t] + V1

~h[t − 1] + V2
~h[t − 2]

)
L =

1

2

∑
t

‖~y −W~h[t]‖2

where U is a N × D matrix, W is a K × N matrix, and V1 and V2

are N × N matrices. Find an algorithm to compute ∇~h[t]L.


	Nonlinear Time Invariant Filtering: CNN & RNN
	Back-Propagation Review
	Back-Propagation Training for CNN and RNN
	Back-Prop Through Time
	Conclusion
	Written Example

