FIR/IIR	CNN/RNN	Partial Derivatives	Back-Prop	Conclusion	Example

Partial and Total Derivatives

Mark Hasegawa-Johnson All content CC-SA 4.0 unless otherwise specified.

ECE 417: Multimedia Signal Processing, Fall 2020

FIR/IIR	CNN/RNN	Partial Derivatives	Back-Prop	Conclusion	Example

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

1 Linear Time Invariant Filtering: FIR & IIR

- 2 Nonlinear Time Invariant Filtering: CNN & RNN
- 3 Partial and Total Derivatives
- 4 Back-Propagation Review
- 5 Conclusion
- 6 Written Example

FIR/IIR	CNN/RNN	Partial Derivatives	Back-Prop	Conclusion	Example
●○○○	00000		00000000000	00	00
Outline					

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

1 Linear Time Invariant Filtering: FIR & IIR

- 2 Nonlinear Time Invariant Filtering: CNN & RNN
- 3 Partial and Total Derivatives
- 4 Back-Propagation Review
- **5** Conclusion
- 6 Written Example

FIR/IIR	CNN/RNN	Partial Derivatives	Back-Prop	Conclusion	Example
○●○○	00000	000000	00000000000		00
Basics	of DSP: F	lltering			

$$y[n] = \sum_{m=-\infty}^{\infty} h[m]x[n-m]$$
$$Y(z) = H(z)X(z)$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶

$$y[n] = \sum_{m=0}^{N-1} h[m] x[n-m]$$

The coefficients, h[m], are chosen in order to optimally position the N-1 zeros of the transfer function, r_k , defined according to:

$$H(z) = \sum_{m=0}^{N-1} h[m] z^{-m} = h[0] \prod_{k=1}^{N-1} (1 - r_k z^{-1})$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

FIR/IIR	CNN/RNN	Partial Derivatives	Back-Prop	Conclusion	Example
○○○●	00000	000000	00000000000	00	00
Infinite	Impulse F	Response (IIR)		

$$y[n] = \sum_{m=0}^{N-1} b_m x[n-m] + \sum_{m=1}^{M-1} a_m y[n-m]$$

The coefficients, b_m and a_m , are chosen in order to optimally position the N-1 zeros and M-1 poles of the transfer function, r_k and p_k , defined according to:

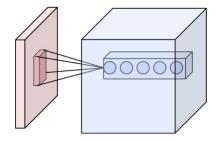
$$H(z) = \frac{\sum_{m=0}^{N-1} b_m z^{-m}}{1 - \sum_{m=1}^{M-1} a_m z^{-m}} = b_0 \frac{\prod_{k=1}^{N-1} (1 - r_k z^{-1})}{\prod_{k=1}^{M-1} (1 - p_k z^{-1})}$$

STABILITY: If any of the poles are on or outside the unit circle $(|p_k| \ge 1)$, then $y[n] \to \infty$, even with finite x[n].

FIR/IIR	CNN/RNN	Partial Derivatives	Back-Prop	Conclusion	Example
0000	●○○○○	000000	00000000000		00
Outline	5				

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- 1 Linear Time Invariant Filtering: FIR & IIR
- 2 Nonlinear Time Invariant Filtering: CNN & RNN
- 3 Partial and Total Derivatives
- 4 Back-Propagation Review
- **5** Conclusion
- 6 Written Example



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Image CC-SA-4.0 by Aphex34, https://commons.wikimedia.org/wiki/File:Conv_layer.png

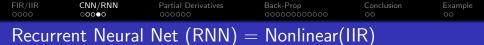
$$\hat{y}[n] = g\left(\sum_{m=0}^{N-1} w[m] \times [n-m]\right)$$

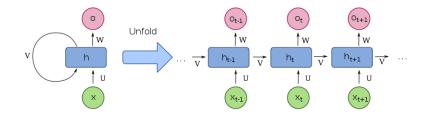
The coefficients, w[m], are chosen to minimize some kind of error. For example, suppose that the goal is to make $\hat{y}[n]$ resemble a target signal y[n]; then we might use

$$E = \frac{1}{2} \sum_{n=0}^{N} (\hat{y}[n] - y[n])^2$$

and choose

$$w[n] \leftarrow w[n] - \eta \frac{dE}{dw[n]}$$

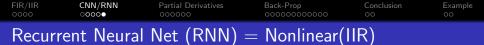




▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Image CC-SA-4.0 by Ixnay,

https://commons.wikimedia.org/wiki/File:Recurrent_neural_network_unfold.svg



$$h[n] = g\left(x[n] + \sum_{m=1}^{M-1} w[m]h[n-m]\right)$$

The coefficients, w[m], are chosen to minimize the error. For example, suppose that the goal is to make h[n] resemble a target signal y[n]; then we might use

$$E = \frac{1}{2} \sum_{n=0}^{N} (h[n] - y[n])^2$$

and choose

$$w[m] \leftarrow w[m] - \eta \frac{dE}{dw[m]}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

FIR/IIR	CNN/RNN	Partial Derivatives	Back-Prop	Conclusion	Example
0000	00000	●00000	00000000000	00	00
Outline					

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- 1 Linear Time Invariant Filtering: FIR & IIR
- 2 Nonlinear Time Invariant Filtering: CNN & RNN
- 3 Partial and Total Derivatives
- 4 Back-Propagation Review
- **5** Conclusion
- 6 Written Example

FIR/IIR	CNN/RNN	Partial Derivatives	Back-Prop	Conclusion	Example
0000	00000	○●0000	000000000000	00	00
Partial	Derivativ	es			

In order to do back-propagation in recurrent neural networks, it will be important to distinguish between partial and total derivatives. Unfortunately, these are not defined very clearly in introductory calculus classes.

The standard definition of the partial derivative of $f(\vec{x})$ w.r.t. x_1 , where $\vec{x} = [x_1, \dots, x_D]^T$, is

$$\frac{\partial f}{\partial x_1} = \lim_{\epsilon \to 0} \left(\frac{f(x_1 + \epsilon, x_2, \ldots) - f(x_1, x_2, \ldots)}{\epsilon} \right)$$

FIR/IIR	CNN/RNN	Partial Derivatives	Back-Prop	Conclusion	Example
0000	00000	○0●000	00000000000	00	00
Partial	Derivativ	es			

$$\frac{\partial f}{\partial x_1} = \lim_{\epsilon \to 0} \left(\frac{f(x_1 + \epsilon, x_2, \ldots) - f(x_1, x_2, \ldots)}{\epsilon} \right)$$

In other words, $\frac{\partial f}{\partial x_k}$ is defined as the derivative of f w.r.t. x_k while holding all of the other x_d , for $1 \le d \le D$, constant.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

FIR/IIR	CNN/RNN	Partial Derivatives	Back-Prop	Conclusion	Example
0000	00000	○00●00	00000000000	00	00
Total I	Derivative	S			

The partial derivative and total derivative differ if some of the **other** elements of the vector \vec{x} might depend on x_k . For example, suppose that each x_i is a function of x_i for $i \leq j$:

$$x_j = g_j(x_1,\ldots,x_{j-1})$$

Then the **total** derivative allows each of the x_j , for j > k, to vary as x_k varies:

$$\frac{df}{dx_1} = \lim_{\epsilon \to 0} \left(\frac{f(x_1 + \epsilon, x_2(x_1 + \epsilon), \ldots) - f(x_1, x_2(x_1), \ldots)}{\epsilon} \right)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

FIR/IIR	CNN/RNN	Partial Derivatives	Back-Prop	Conclusion	Example
0000	00000	○000●0	00000000000		00
Partial	and Tota	l Derivatives			

• The **partial derivative** of *f* w.r.t. *x_k* holds all of the other variables constant, while varying **only** *x_k*. The other variables are held constant **ignoring any dependency they otherwise would have on** *x_k*:

$$\frac{\partial f}{\partial x_1} = \lim_{\epsilon \to 0} \left(\frac{f(x_1 + \epsilon, x_2(x_1), \ldots) - f(x_1, x_2(x_1), \ldots)}{\epsilon} \right)$$

• The **total derivative** takes into account the effect that varying *x_k* might have on all the other variables:

$$\frac{df}{dx_1} = \lim_{\epsilon \to 0} \left(\frac{f(x_1 + \epsilon, x_2(x_1 + \epsilon), \ldots) - f(x_1, x_2(x_1), \ldots)}{\epsilon} \right)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

0000	00000	00000	00000000000	00	00
Partia	Land Tota	I Derivatives			

- So far, we've pretended that, when we say "holding all other variables constant," we know what that means.
- In a neural network, there are lots of implicit variables, that you can calculate if you want to.
- When you say "holding all other variables constant," it is necessary to specify exactly which other variables you mean.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

FIR/IIR	CNN/RNN	Partial Derivatives	Back-Prop	Conclusion	Example
0000	00000		●00000000000	00	00
Outline					

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- 1 Linear Time Invariant Filtering: FIR & IIR
- 2 Nonlinear Time Invariant Filtering: CNN & RNN
- 3 Partial and Total Derivatives
- 4 Back-Propagation Review
- **5** Conclusion
- 6 Written Example

Review:	Excitation	n and Activa	tion		
FIR/IIR	CNN/RNN	Partial Derivatives	Back-Prop	Conclusion	Example
0000	00000	000000	○●0000000000		00

The activation of a hidden node is the output of the nonlinearity (for this reason, the nonlinearity is sometimes called the activation function). For example, in a fully-connected network with outputs ŷ_I, weights w, bias b, nonlinearity g(), and hidden node activations h, the activation of the Ith output node is

$$\hat{y}_l = g\left(b_l + \sum_{k=1}^p w_{lk}h_k\right)$$

• The **excitation** of a hidden node is the input of the nonlinearity. For example, the excitation of the node above is

$$\xi_I = b_I + \sum_{k=1}^p w_{lk} h_k$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• The **excitation** of a hidden node is the input of the nonlinearity. For example, the excitation of the node above is

$$\xi_l = b_l + \sum_{k=1}^p w_{lk} h_k$$

• The gradient of the error w.r.t. the weight is

$$\frac{d\mathcal{L}}{dw_{lk}} = \epsilon_l h_k$$

where ϵ_l is the derivative of the error w.r.t. the l^{th} excitation:

$$\epsilon_l = \frac{d\mathcal{L}}{de_l}$$

FIR/IIR CNN/RNN Partial Derivatives Back-Prop Conclusion Example 0000 00000 000 000 00 00 Backprop for Fully-Connected Network 000 00 00

Suppose we have a fully-connected network, with inputs \vec{x} , weight matrices $W^{(1)}$ and $W^{(2)}$, nonlinearities g() and h(), and output \hat{y} :

$$\begin{aligned} \xi_k^{(1)} &= b_k^{(1)} + \sum_j w_{kj}^{(1)} x_j, \quad h_k = g\left(\xi_k^{(1)}\right) \\ \xi_l^{(2)} &= b_l^{(2)} + \sum_k w_{lk}^{(2)} h_k, \quad \hat{y}_l = h\left(\xi_l^{(2)}\right) \end{aligned}$$

Then the back-prop gradients are the derivatives of \mathcal{L} with respect to the **excitations** at each node:

$$\frac{d\mathcal{L}}{dw_{lk}^{(2)}} = \epsilon_l h_k, \quad \epsilon_l = \frac{d\mathcal{L}}{d\xi_l^{(2)}}$$
$$\frac{d\mathcal{L}}{dw_{kj}^{(1)}} = \delta_k x_j, \quad \delta_k = \frac{d\mathcal{L}}{d\xi_k^{(1)}}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

FIR/IIR	CNN/RNN	Partial Derivatives	Back-Prop	Conclusion	Example
0000	00000	000000	00000000000	00	00
Back-F	^o rop Exan	nple			

Suppose we have the following network:

$$h = \cos(x)$$
$$\hat{y} = \sqrt{1 + h^2}$$

Suppose we need $\frac{d\hat{y}}{dx}$. We find it as

$$\frac{d\hat{y}}{dx} = \frac{d\hat{y}}{dh}\frac{\partial h}{\partial x} = \left(\frac{h}{\sqrt{1+h^2}}\right)(-\sin(x))$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

FIR/IIR	CNN/RNN	Partial Derivatives	Back-Prop	Conclusion	Example
0000	00000		○0000000000	00	00
Back-F	^p rop Exan	nple			

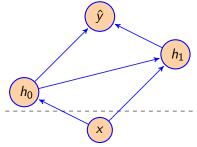
Suppose we have the following network:

$$egin{aligned} h_0 &= \cos(x) \ h_1 &= rac{1}{\sqrt{2}} \left(h_0^3 + \sin(x)
ight) \ \hat{y} &= \sqrt{h_0^2 + h_1^2} \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

What is $\frac{d\hat{y}}{dx}$? How can we compute that?

		00000000000	
Flow Gra	aphs		

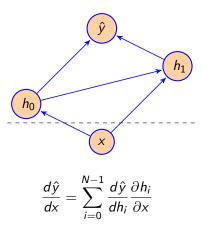


We often show the flow graph for the chain rule using bubbles and arrows, as shown above. You can imagine the chain rule as taking a summation along any cut through the flow graph—for example, the dashed line shown above. You take the total derivative from \hat{y} to the cut, and then the partial derivative from there back to x.

$$\frac{d\hat{y}}{dx} = \sum_{i=0}^{N-1} \frac{d\hat{y}}{dh_i} \frac{\partial h_i}{\partial x}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

FIR/IIR	CNN/RNN	Partial Derivatives	Back-Prop	Conclusion	Example
0000	00000	000000	000000000000	00	00
Flow (Graphs				



For each h_i , we find the **total derivative** of \hat{y} w.r.t. h_i , multiplied by the **partial derivative** of h_i w.r.t. x.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

FIR/IIR	CNN/RNN	Partial Derivatives	Back-Prop	Conclusion	Example
0000	00000	000000	○0000000●000	00	00
Back-F	^o rop Exan	nple			

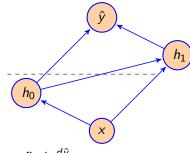
First, we find $\frac{d\hat{y}}{dh_1}$:

$$\hat{y} = \sqrt{h_0^2 + h_1^2}$$

$$\frac{d\hat{y}}{dh_1} = \frac{h_1}{\sqrt{h_0^2 + h_1^2}}$$

・ロト・(中・・川・・日・・日・

FIR/IIR	CNN/RNN	Partial Derivatives	Back-Prop	Conclusion	Example
0000	00000	000000	○○○○○○○○●○○	00	00
Back-	Prop Exan	nple			



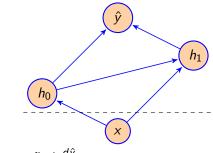
Second, back-prop to find $\frac{d\hat{y}}{dh_0}$:

$$\frac{d\hat{y}}{dh_0} = \frac{\partial\hat{y}}{\partial h_0} + \frac{d\hat{y}}{dh_1}\frac{\partial h_1}{\partial h_0} = \frac{1}{\sqrt{h_0^2 + h_1^2}}\left(h_0 + \left(\frac{3}{\sqrt{2}}\right)h_0^2h_1\right)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

FIR/IIR	CNN/RNN	Partial Derivatives	Back-Prop	Conclusion	Example
			000000000000		
Back	Dron Evan	anlo			

Back-Prop Example



Third, back-prop to find $\frac{d\hat{y}}{dx}$:

$$\begin{aligned} \frac{d\hat{y}}{dx} &= \frac{d\hat{y}}{dh_1} \frac{\partial h_1}{\partial x} + \frac{d\hat{y}}{dh_0} \frac{\partial h_0}{\partial x} \\ &= \left(\frac{h_1}{\sqrt{h_0^2 + h_1^2}}\right) \cos(x) - \left(\frac{\left(h_0 + \left(\frac{3}{\sqrt{2}}\right)h_0^2 h_1\right)}{\sqrt{h_0^2 + h_1^2}}\right) \sin(x) \end{aligned}$$

FIR/IIR	CNN/RNN	Partial Derivatives	Back-Prop	Conclusion	Example
0000	00000	000000	○○○○○○○○○○	00	00
Rack-	Prop and I	Partial Deriva	tivees		

Suppose we have a neural net, defined by

$$\xi_k^{(l+1)} = \sum_j w_{k,j}^{(l+1)} \sigma\left(\xi_j^{(l)}\right)$$

then, if we define

$$\delta_j^{(l)} = \frac{\partial \mathcal{L}}{\partial \xi_j^{(l)}}$$

we can compute it as

$$\delta_j^{(l)} = \sum_k \delta_k^{(l+1)} \left(\frac{\partial \xi_k^{(l+1)}}{\partial \xi_j^{(l)}} \right)$$

Here, the partial-derivative sign ∂ means that we hold constant all other ξ variables **at the same layer**. We're obviously not holding constant all excitations at the **next** layer, because those are the things over which we compute the back-prop.

FIR/IIR	CNN/RNN	Partial Derivatives	Back-Prop	Conclusion	Example
0000	00000	000000	00000000000	●○	00
Outline					

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- 1 Linear Time Invariant Filtering: FIR & IIR
- 2 Nonlinear Time Invariant Filtering: CNN & RNN
- 3 Partial and Total Derivatives
- 4 Back-Propagation Review

5 Conclusion

6 Written Example

FIR/IIR	CNN/RNN	Partial Derivatives	Back-Prop	Conclusion	Example
0000	00000		00000000000	○●	00
Conclu	isions				

• Back-Prop, in general, is just the chain rule of calculus:

$$\frac{d\mathcal{L}}{dw} = \sum_{i=0}^{N-1} \frac{d\mathcal{L}}{dh_i} \frac{\partial h_i}{\partial w}$$

- Convolutional Neural Networks are the nonlinear version of an FIR filter. Coefficients are shared across time steps.
- Recurrent Neural Networks are the nonlinear version of an IIR filter. Coefficients are shared across time steps. Error is back-propagated from every output time step to every input time step.

FIR/IIR	CNN/RNN	Partial Derivatives	Back-Prop	Conclusion	Example
0000	00000		00000000000	00	●○
Outline	2				

- 1 Linear Time Invariant Filtering: FIR & IIR
- 2 Nonlinear Time Invariant Filtering: CNN & RNN
- 3 Partial and Total Derivatives
- 4 Back-Propagation Review
- **5** Conclusion
- 6 Written Example

FIR/IIR	CNN/RNN	Partial Derivatives	Back-Prop	Conclusion	Example			
0000	00000	000000	00000000000	00	○●			
Written Example								

Consider a set of variables (u, v, w, x, y, z) with the following relationships:

$$u = \epsilon_u$$

 $v = 0.1u + \epsilon_v$
 $w = 0.1v + 0.1u + \epsilon_w$
 $x = 0.1w + 0.1v + 0.1u + \epsilon_x$
 $y = 0.1x + 0.1w + 0.1v + 0.1u + \epsilon_y$
 $z = 0.1y + 0.1x + 0.1w + 0.1v + 0.1u + \epsilon_z$

Draw a flow-graph.

2 Calculate the gradient of z w.r.t. the vector $\vec{\phi} = [u, v]^T$.

▲□▶▲□▶▲□▶▲□▶ ■ のへで