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© Topics



@ HWS3 (lec. 8, 11): Gaussians, classifiers, and GMMs
e Reading: A Gentle Tutorial. ..

@ MP3 (lec. 12): PCA
e Reading: Face Recognition Using Eigenfaces

@ HW4 (lec. 13-14): EM, HMMs
e Reading: A Tutorial. ..

Q MP4 (lec. 15-16): Baum-Welch, scaled forward-backward


http://faculty.washington.edu/fxia/courses/LING572/EM_bilmes98.pdf
http://hans.fugal.net/comps/papers/turk_1991.pdf
https://ieeexplore.ieee.org/document/18626?arnumber=18626
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© Gaussians and GMM
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Multivariate Gaussian

» 1 Yz TE (R
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Mahalanobis Distance

A contour plot of the Gaussian pdf is a set of ellipses. Each ellipse
shows the set of points where the Mahalanobis distance ds (X, ji) is
equal to a constant:

ds (%, i) = (% — ) TR — i)

For example, if the covariance matrix is diagonal, then

o2 0 -+ 0
D 3

0 o3 .- 0
L= L I
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Bayesian Classifiers

A Bayesian classifier chooses a label, y € {0... Ny — 1}, that has
the minimum probability of error given an observation, X € RP:

y = argmln Pr{Y # y|X = x}
= argmaxP { }
— argmax py  (v1%)

y

= argmax py (¥)pgy (X]y)
y
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The four Bayesian probabilities

@ The posterior and evidence, py‘)?(y|>_<’) and pg(X), can only
be learned if you have lots and lots of training data.

@ The prior, py(y), is very easy to learn.

@ The likelihood, pxly(i\y) can be learned from a

medium-sized training corpus, if you use a parametric model
like a Gaussian or GMM.
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Maximum Likelihood Estimation

Maximum likelihood estimation finds the parameters that
maximize the likelihood of the data.

O = argmax p (D|O)

Usually we assume that the data are sampled independently and
identically distributed, so that

n—1
O = argmax H p)?ly()?ﬂy,-)
i=0
n—1
= argmaxz In p)—("y(i}\y,-)
i=0
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Example: Gaussians

n—1
O = argmin Y (In[E,,| + (5 — /i) "%, (% — i)
i=0

If we differentiate, and set the derivative to zero, we get

1
fiy ML = Py X;
Y iyi=y
~ 1 . NN o
Xy ML= n (Xi — fiy)(% My)T
Y iyi=y

where ny, is the number of tokens from class y; = y.



Gaussians
00000080

Gaussian Mixture Models

A Gaussian mixture model is a pdf with the form:
pz(X) =D aN(X|iik, Zk)

...where, in order to make sure that 1 = [ pg(X)dX, we have to
make sure that

¢k >0 and chzl
k
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EM Re-estimation for Gaussian Mixture Models

= % Z%’(k)

= 2 vi(k)xi
>oivilk)
5, = > ilk)(Xi — _’k)()_{ fi)"
> 7ik)

where the gamma function is

_ aN(Kilik, k)
Sy N (Kl fie Ze)
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Properties of symmetric matrices

If Ais symmetric with D eigenvectors, and D distinct eigenvalues,
then
A=VAVT

A= VTAV
wl=viv=|
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Nearest Neighbors Classifier

A "nearest neighbors classifier’ makes the following guess: the test
vector is an image of the same person as the closest training vector:

Vtest = Ym, m* = argmoin [Xm — Xtest |
—

where “closest,” here, means Euclidean distance:

D—-1

1% — Stestll = | D (xma — Xtest.a)?
d=0
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Principal Component Directions

The principal component directions, V = [V, ..., Vp_1], are the
eigenvectors of the sample covariance matrix:

ZZLV/\VT,
n—1

> is the inner product of the centered data matrix, X, with itself:

1

Y = XTXx
n—1
where
()?1—!7):
o i
X (%2 .M)
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Principal Components

The principal components of a vector x; are the elements of its
projection onto V:



PCA
00008000

PCA diagonalizes the covariance

Rotate the whole data matrix into the principal component axes:

il
I ]l =xv
Va
The covariance of the rotated data matrix is diagonal:
A 0 - 0
0

0 A
YTy cviXTxv=n=| 2
0 0 AD
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Energy Spectrum

The total energy is the same in either the X space or the Y space:

b 1 1 1 b
2 T _ T _
E oq = P 1trace (X X) = 1trace (Y Y) = dE_l)\d

The percent of energy expressed by the first k principal
components is:

k

PoE(k) = 100 x Lg:l Ad

d=1 AD
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Gram Matrix

o XTX is usually called the sum-of-squares matrix. ~1:XTX is
the sample covariance.

o G = XXT is called the gram matrix. Its (i,j)*" element is the
dot product between the i*" and j'" data samples:

o NT /=

gj =i — i) (%

@ The sum-of-squares matrix and the gram matrix have the
same eigenvalues, but different eigenvectors:

A=VTIXTX)V=UT(Xxx"U
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Singular Value Decomposition

ANY M x D MATRIX, X, can be written as X = USV'T.

o U= [ip,...,0y_1] are the eigenvectors of XX .
o V =[W,...,Vp_1] are the eigenvectors of X" X.
so O 0 00
eS5=|0 ... 0 0 O | are the singular values,
0 0 Smin(D,M)fl 00
Sqd = \/E

S has some all-zero columns if M > D, or all-zero rows if M < D.
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Expectation Maximization

Expectation maximization maximizes the expected log likelihood,
often called the “Q function:”

QO,0)=E [|np(z>v,z>h|e) ‘Dv,é}

The Q function is useful because:

@ For many pdfs, it's possible to find ©* in one step, where

©* = argmax Q(0, ©)
©

@ O is guaranteed to have better likelihood than 6:

L£(©*) > L(©)



Hidden Markov Model

@ Start in state g; = i with pmf 7;.

@ Generate an observation, X, with pdf b;(X).

© Transition to a new state, g:1 = j, according to pmf a;;.
Q Repeat.
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The Three Problems for an HMM

© Recognition: Given two different HMMs, A; and Ay, and an
observation sequence X. Which HMM was more likely to have
produced X7 In other words, p(X|A1) > p(X|A2)?

@ Segmentation: What is p(q: = i|X,A\)?

© Training: Given an initial HMM A, and an observation
sequence X, can we find A such that p(X|\') > p(X|A)?



The Forward Algorithm

Definition: at(i) = p(Xi, ..., X, g = i|\). Computation:

@ Initialize:

Q lterate:



The Backward Algorithm

Definition: S:(i) = p(Xt+1, - .., XT|g: = i,\). Computation:
@ Initialize:
Br(i)=1, 1<i<N

Q lterate:
() = ajbi(%41)Bena(), 1<i<N, 1<t<T-1
j=1
© Terminate:

p(X|A) = ZTF, x1)B1(1)



Segmentation

@ The State Posterior:

e (1)Be (/)
Zivzl Oét(k)ﬁt(k)

Ye(i) = p(ge = i1X,\) =

@ The Segment Posterior:
§e(ivj) = p(ge = iy qe1 = jIX, A)

_ ae(i)ajbj(Xer1)Ber1(j)
Sohy Soeny (k) akebe(Re1)Ber1(€)
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© Baum-Welch and Scaled Forward-Backward
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The Baum-Welch Algorithm: Initial and Transition

Probabilities

@ Initial State Probabilities:

/ — Zsequences Wl(l)
# sequences

@ Transition Probabilities:

D Vi 31 ()

D SPD SHETA(N)
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The Baum-Welch Algorithm: Observation Probabilities

@ Discrete Observation Probabilities:

@ Gaussian Observation PDFs:

T " =
Sl ()%

NS )

s _ iy ve()(%e — i) (%e — i
ZL Ve (1)

)T
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Scaled Forward Algorithm: The Variables

The scaled forward algorithm uses not just one, but three variables:

@ The intermediate forward probability:
a(j) = p(qr = j, X%e|x, ..., Xe—1, )
@ The scaling factor:
gt = p(Xe|Xi, ..oy Xe—1, N)
© The scaled forward probability:

é\‘t(.j) = p(qt :.j‘)?la v 7)?1‘7/\)
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The Scaled Forward Algorithm

@ Initialize: 1
a1(i) = ;W,-b,-()?l)

Q lterate:

N
() = Y Qea(i)agbi(%)
i—1

N
g =Y d:())
j=1
&t(.j) = ;&t(j)

© Terminate:

Inp(X|A\) = Zlngt
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The Scaled Backward Algorithm

This can also be done for the backward algorithm:

@ Initialize:
Br()=1, 1<i<N

Q lterate:

N
Bt(") = Z 3ijbj(>?t+l)3r+1(f)

j=1
s 1~ .
Be(i) = —Be(i)
Ct
Rabiner uses ¢; = g, but | recommend instead that you use

Cr = math(i)
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State and Segment Posteriors, using the Scaled

Forward-Backward Algorithm

Because both g; and ¢; are independent of the state number 7, we
can use & and  in place of a and §:

@ The State Posterior:

(i) = p(qe = i1X,\) = N&t(i)/Bt(i)
pa

@ The Segment Posterior:

gt(’v./) = p(qt = iv di+1 :./|Xa/\)
_ ae(i)ajbj(%e1) Bes1())
>kt St Ge(k)akeby(%ey1)Bera (€)
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Summary: Topics

@ HWS3 (lec. 8, 11): Gaussians, classifiers, and GMMs
e Reading: A Gentle Tutorial. ..

@ MP3 (lec. 12): PCA
e Reading: Face Recognition Using Eigenfaces

@ HW4 (lec. 13-14): EM, HMMs
e Reading: A Tutorial. ..

Q MP4 (lec. 15-16): Baum-Welch, scaled forward-backward


http://faculty.washington.edu/fxia/courses/LING572/EM_bilmes98.pdf
http://hans.fugal.net/comps/papers/turk_1991.pdf
https://ieeexplore.ieee.org/document/18626?arnumber=18626
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