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Topics

1 HW3 (lec. 8, 11): Gaussians, classifiers, and GMMs

Reading: A Gentle Tutorial. . .

2 MP3 (lec. 12): PCA

Reading: Face Recognition Using Eigenfaces

3 HW4 (lec. 13-14): EM, HMMs

Reading: A Tutorial. . .

4 MP4 (lec. 15-16): Baum-Welch, scaled forward-backward

http://faculty.washington.edu/fxia/courses/LING572/EM_bilmes98.pdf
http://hans.fugal.net/comps/papers/turk_1991.pdf
https://ieeexplore.ieee.org/document/18626?arnumber=18626
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Multivariate Gaussian

p~X (~x) =
1

(2π)D/2|Σ|1/2
e−

1
2

(~x−~µ)T Σ−1(~x−~µ)
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Mahalanobis Distance

A contour plot of the Gaussian pdf is a set of ellipses. Each ellipse
shows the set of points where the Mahalanobis distance dΣ(~x , ~µ) is
equal to a constant:

dΣ(~x , ~µ) = (~x − ~µ)TΣ−1(~x − ~µ)

For example, if the covariance matrix is diagonal, then

dΣ(~x , ~µ) =
D∑

d=1

(xd − µd)2

σ2
d

if Σ =


σ2

1 0 · · · 0
0 σ3

2 · · · 0
...

...
. . . · · ·

0 0 · · · σ2
D


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Bayesian Classifiers

A Bayesian classifier chooses a label, y ∈ {0 . . .NY − 1}, that has
the minimum probability of error given an observation, ~x ∈ <D :

ŷ = argmin
y

Pr
{
Y 6= y |~X = ~x

}
= argmax

y
Pr
{
Y = y |~X = ~x

}
= argmax

y
p
Y |~X (y |~x)

= argmax
y

pY (ŷ)p~X |Y (~x |y)
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The four Bayesian probabilities

The posterior and evidence, p
Y |~X (y |~x) and p~X (~x), can only

be learned if you have lots and lots of training data.

The prior, pY (y), is very easy to learn.

The likelihood, p~X |Y (~x |y) can be learned from a

medium-sized training corpus, if you use a parametric model
like a Gaussian or GMM.
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Maximum Likelihood Estimation

Maximum likelihood estimation finds the parameters that
maximize the likelihood of the data.

Θ̂ML = argmax p (D|Θ)

Usually we assume that the data are sampled independently and
identically distributed, so that

Θ̂ML = argmax
n−1∏
i=0

p~X |Y (~xi |yi )

= argmax
n−1∑
i=0

ln p~X |Y (~xi |yi )
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Example: Gaussians

Θ̂ML = argmin
n−1∑
i=0

(
ln |Σyi |+ (~xi − ~µyi )

TΣ−1
yi

(~xi − ~µyi )
)

If we differentiate, and set the derivative to zero, we get

µ̂y ,ML =
1

ny

∑
i :yi=y

~xi

Σ̂y ,ML =
1

ny

∑
i :yi=y

(~xi − ~µy )(~xi − ~µy )T

where ny is the number of tokens from class yi = y .



Topics Gaussians PCA HMM Baum-Welch Summary

Gaussian Mixture Models

A Gaussian mixture model is a pdf with the form:

p~X (~x) =
K−1∑
k=0

ckN (~x |~µk ,Σk)

. . . where, in order to make sure that 1 =
∫
p~X (~x)d~x , we have to

make sure that
ck ≥ 0 and

∑
k

ck = 1
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EM Re-estimation for Gaussian Mixture Models

ck =
1

n

n∑
i=1

γi (k),

~µk =

∑
i γi (k)~xi∑
i γi (k)

,

Σk =

∑
i γi (k)(~xi − ~µk)(~xi − ~µk)T∑

i γi (k)

where the gamma function is

γi (k) = p(ki = k |~xi ) =
ckN (~xi |~µk ,Σk)∑K
`=1 c`N (~xi |~µ`,Σ`)
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Properties of symmetric matrices

If A is symmetric with D eigenvectors, and D distinct eigenvalues,
then

A = VΛV T

Λ = V TAV

VV T = V TV = I
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Nearest Neighbors Classifier

A “nearest neighbors classifier” makes the following guess: the test
vector is an image of the same person as the closest training vector:

ŷtest = ym∗ , m∗ =
M−1

argmin
m=0

‖~xm − ~xtest‖

where “closest,” here, means Euclidean distance:

‖~xm − ~xtest‖ =

√√√√D−1∑
d=0

(xmd − xtest,d)2
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Principal Component Directions

The principal component directions, V = [~v0, . . . , ~vD−1], are the
eigenvectors of the sample covariance matrix:

Σ =
1

n − 1
VΛV T ,

Σ is the inner product of the centered data matrix, X , with itself:

Σ =
1

n − 1
XTX

where

X =


(~x1 − ~µ)T

(~x2 − ~µ)T

...
(~xn − ~µ)T


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Principal Components

The principal components of a vector ~xi are the elements of its
projection onto V :

~yi = V T (~xi − ~µ)
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PCA diagonalizes the covariance

Rotate the whole data matrix into the principal component axes:

Y =


~yT1
~yT2

...
~yTn

 = XV

The covariance of the rotated data matrix is diagonal:

Y TY = V TXTXV = Λ =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λD


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Energy Spectrum

The total energy is the same in either the X space or the Y space:

D∑
d=1

σ2
d =

1

n − 1
trace

(
XTX

)
=

1

n − 1
trace

(
Y TY

)
=

1

n − 1

D∑
d=1

λd

The percent of energy expressed by the first k principal
components is:

PoE(k) = 100×
∑k

d=1 λd∑D
d=1 λD
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Gram Matrix

XTX is usually called the sum-of-squares matrix. 1
n−1X

TX is
the sample covariance.

G = XXT is called the gram matrix. Its (i , j)th element is the
dot product between the i th and j th data samples:

gij = (~xi − ~µ)T (~xj − ~µ)

The sum-of-squares matrix and the gram matrix have the
same eigenvalues, but different eigenvectors:

Λ = V T (XTX )V = UT (XXT )U
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Singular Value Decomposition

ANY M × D MATRIX, X , can be written as X = USV T .

U = [~u0, . . . , ~uM−1] are the eigenvectors of XXT .

V = [~v0, . . . , ~vD−1] are the eigenvectors of XTX .

S =

 s0 0 0 0 0
0 . . . 0 0 0
0 0 smin(D,M)−1 0 0

 are the singular values,

sd =
√
λd .

S has some all-zero columns if M > D, or all-zero rows if M < D.



Topics Gaussians PCA HMM Baum-Welch Summary

Outline

1 Topics

2 Gaussians and GMM

3 PCA

4 Expectation Maximization and HMMs

5 Baum-Welch and Scaled Forward-Backward

6 Summary



Topics Gaussians PCA HMM Baum-Welch Summary

Expectation Maximization

Expectation maximization maximizes the expected log likelihood,
often called the “Q function:”

Q(Θ, Θ̂) = E
[
ln p(Dv ,Dh|Θ)

∣∣∣Dv , Θ̂
]

The Q function is useful because:

1 For many pdfs, it’s possible to find Θ∗ in one step, where

Θ∗ = argmax
Θ

Q(Θ, Θ̂)

2 Θ∗ is guaranteed to have better likelihood than Θ̂:

L(Θ∗) ≥ L(Θ̂)
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Hidden Markov Model

1 2 3

~x ~x ~x

a11
a12

a13

b1(~x)

a22

a21

a23

b2(~x)

a33

a32

a31

b3(~x)

1 Start in state qt = i with pmf πi .

2 Generate an observation, ~x , with pdf bi (~x).

3 Transition to a new state, qt+1 = j , according to pmf aij .

4 Repeat.
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The Three Problems for an HMM

1 Recognition: Given two different HMMs, Λ1 and Λ2, and an
observation sequence X . Which HMM was more likely to have
produced X? In other words, p(X |Λ1) > p(X |Λ2)?

2 Segmentation: What is p(qt = i |X ,Λ)?

3 Training: Given an initial HMM Λ, and an observation
sequence X , can we find Λ′ such that p(X |Λ′) > p(X |Λ)?



Topics Gaussians PCA HMM Baum-Welch Summary

The Forward Algorithm

Definition: αt(i) ≡ p(~x1, . . . , ~xt , qt = i |Λ). Computation:

1 Initialize:
α1(i) = πibi (~x1), 1 ≤ i ≤ N

2 Iterate:

αt(j) =
N∑
i=1

αt−1(i)aijbj(~xt), 1 ≤ j ≤ N, 2 ≤ t ≤ T

3 Terminate:

p(X |Λ) =
N∑
i=1

αT (i)
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The Backward Algorithm

Definition: βt(i) ≡ p(~xt+1, . . . , ~xT |qt = i ,Λ). Computation:

1 Initialize:
βT (i) = 1, 1 ≤ i ≤ N

2 Iterate:

βt(i) =
N∑
j=1

aijbj(~xt+1)βt+1(j), 1 ≤ i ≤ N, 1 ≤ t ≤ T − 1

3 Terminate:

p(X |Λ) =
N∑
i=1

πibi (~x1)β1(i)
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Segmentation

1 The State Posterior:

γt(i) = p(qt = i |X ,Λ) =
αt(i)βt(i)∑N

k=1 αt(k)βt(k)

2 The Segment Posterior:

ξt(i , j) = p(qt = i , qt+1 = j |X ,Λ)

=
αt(i)aijbj(~xt+1)βt+1(j)∑N

k=1

∑N
`=1 αt(k)ak`b`(~xt+1)βt+1(`)
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The Baum-Welch Algorithm: Initial and Transition
Probabilities

1 Initial State Probabilities:

π′i =

∑
sequences γ1(i)

# sequences

2 Transition Probabilities:

a′ij =

∑T−1
t=1 ξt(i , j)∑N

j=1

∑T−1
t=1 ξt(i , j)
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The Baum-Welch Algorithm: Observation Probabilities

1 Discrete Observation Probabilities:

b′j(k) =

∑
t:~xt=k γt(j)∑

t γt(j)

2 Gaussian Observation PDFs:

~µ′i =

∑T
t=1 γt(i)~xt∑T
t=1 γt(i)

Σ′i =

∑T
t=1 γt(i)(~xt − ~µi )(~xt − ~µi )T∑T

t=1 γt(i)
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Scaled Forward Algorithm: The Variables

The scaled forward algorithm uses not just one, but three variables:

1 The intermediate forward probability:

α̃t(j) = p(qt = j , ~xt |~x1, . . . , ~xt−1,Λ)

2 The scaling factor:

gt = p(~xt |~x1, . . . , ~xt−1,Λ)

3 The scaled forward probability:

α̂t(j) = p(qt = j |~x1, . . . , ~xt ,Λ)
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The Scaled Forward Algorithm

1 Initialize:

α̂1(i) =
1

g1
πibi (~x1)

2 Iterate:

α̃t(j) =
N∑
i=1

α̂t−1(i)aijbj(~xt)

gt =
N∑
j=1

α̃t(j)

α̂t(j) =
1

gt
α̃t(j)

3 Terminate:

ln p(X |Λ) =
T∑
t=1

ln gt
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The Scaled Backward Algorithm

This can also be done for the backward algorithm:

1 Initialize:
β̂T (i) = 1, 1 ≤ i ≤ N

2 Iterate:

β̃t(i) =
N∑
j=1

aijbj(~xt+1)β̂t+1(j)

β̂t(i) =
1

ct
β̃t(i)

Rabiner uses ct = gt , but I recommend instead that you use

ct = max
i
β̃t(i)
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State and Segment Posteriors, using the Scaled
Forward-Backward Algorithm

Because both gt and ct are independent of the state number i , we
can use α̂ and β̂ in place of α and β:

1 The State Posterior:

γt(i) = p(qt = i |X ,Λ) =
α̂t(i)β̂t(i)∑N

k=1 α̂t(k)β̂t(k)

2 The Segment Posterior:

ξt(i , j) = p(qt = i , qt+1 = j |X ,Λ)

=
α̂t(i)aijbj(~xt+1)β̂t+1(j)∑N

k=1

∑N
`=1 α̂t(k)ak`b`(~xt+1)β̂t+1(`)
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Summary: Topics

1 HW3 (lec. 8, 11): Gaussians, classifiers, and GMMs

Reading: A Gentle Tutorial. . .

2 MP3 (lec. 12): PCA

Reading: Face Recognition Using Eigenfaces

3 HW4 (lec. 13-14): EM, HMMs

Reading: A Tutorial. . .

4 MP4 (lec. 15-16): Baum-Welch, scaled forward-backward

http://faculty.washington.edu/fxia/courses/LING572/EM_bilmes98.pdf
http://hans.fugal.net/comps/papers/turk_1991.pdf
https://ieeexplore.ieee.org/document/18626?arnumber=18626

	Topics
	Gaussians and GMM
	PCA
	Expectation Maximization and HMMs
	Baum-Welch and Scaled Forward-Backward
	Summary

