Lecture 19: Exam 2 Review

Mark Hasegawa-Johnson

ECE 417: Multimedia Signal Processing, Fall 2021

(1) Topics

(2) Gaussians and GMM
(3) PCA

4 Expectation Maximization and HMMs
(5) Baum-Welch and Scaled Forward-Backward
(6) Summary

Outline

(1) Topics

(2) Gaussians and GMM
(3) PCA

4 Expectation Maximization and HMMs
(5) Baum-Welch and Scaled Forward-Backward
(6) Summary

Topics

(1) HW3 (lec. 8, 11): Gaussians, classifiers, and GMMs

- Reading: A Gentle Tutorial...
(2) MP3 (lec. 12): PCA
- Reading: Face Recognition Using Eigenfaces
(3) HW4 (lec. 13-14): EM, HMMs
- Reading: A Tutorial...
(9) MP4 (lec. 15-16): Baum-Welch, scaled forward-backward

Outline

(1) Topics
(2) Gaussians and GMM
(3) PCA

4 Expectation Maximization and HMMs
(5) Baum-Welch and Scaled Forward-Backward
(6) Summary

Multivariate Gaussian

$$
p_{\vec{x}}(\vec{x})=\frac{1}{(2 \pi)^{D / 2}|\Sigma|^{1 / 2}} e^{-\frac{1}{2}(\vec{x}-\vec{\mu})^{T} \Sigma^{-1}(\vec{x}-\vec{\mu})}
$$

Mahalanobis Distance

A contour plot of the Gaussian pdf is a set of ellipses. Each ellipse shows the set of points where the Mahalanobis distance $d_{\Sigma}(\vec{x}, \vec{\mu})$ is equal to a constant:

$$
d_{\Sigma}(\vec{x}, \vec{\mu})=(\vec{x}-\vec{\mu})^{T} \Sigma^{-1}(\vec{x}-\vec{\mu})
$$

For example, if the covariance matrix is diagonal, then

$$
d_{\Sigma}(\vec{x}, \vec{\mu})=\sum_{d=1}^{D} \frac{\left(x_{d}-\mu_{d}\right)^{2}}{\sigma_{d}^{2}} \text { if } \Sigma=\left[\begin{array}{cccc}
\sigma_{1}^{2} & 0 & \cdots & 0 \\
0 & \sigma_{2}^{3} & \cdots & 0 \\
\vdots & \vdots & \ddots & \cdots \\
0 & 0 & \cdots & \sigma_{D}^{2}
\end{array}\right]
$$

Bayesian Classifiers

A Bayesian classifier chooses a label, $y \in\left\{0 \ldots N_{Y}-1\right\}$, that has the minimum probability of error given an observation, $\vec{x} \in \Re^{D}$:

$$
\begin{aligned}
\hat{y} & =\underset{y}{\operatorname{argmin}} \operatorname{Pr}\{Y \neq y \mid \vec{X}=\vec{x}\} \\
& =\underset{y}{\operatorname{argmax}} \operatorname{Pr}\{Y=y \mid \vec{X}=\vec{x}\} \\
& =\underset{y}{\operatorname{argmax}} p_{Y \mid \vec{x}}(y \mid \vec{x}) \\
& =\underset{y}{\operatorname{argmax}} p_{Y}(\hat{y}) p_{\vec{X} \mid Y}(\vec{x} \mid y)
\end{aligned}
$$

The four Bayesian probabilities

- The posterior and evidence, $p_{Y \mid \vec{X}}(y \mid \vec{x})$ and $p_{\vec{x}}(\vec{x})$, can only be learned if you have lots and lots of training data.
- The prior, $p_{Y}(y)$, is very easy to learn.
- The likelihood, $p_{\vec{X} \mid Y}(\vec{x} \mid y)$ can be learned from a medium-sized training corpus, if you use a parametric model like a Gaussian or GMM.

Maximum likelihood estimation finds the parameters that maximize the likelihood of the data.

$$
\hat{\Theta}_{M L}=\operatorname{argmax} p(\mathcal{D} \mid \Theta)
$$

Usually we assume that the data are sampled independently and identically distributed, so that

$$
\begin{aligned}
\hat{\Theta}_{M L} & =\operatorname{argmax} \prod_{i=0}^{n-1} p_{\vec{X} \mid Y}\left(\vec{x}_{i} \mid y_{i}\right) \\
& =\operatorname{argmax} \sum_{i=0}^{n-1} \ln p_{\vec{X} \mid Y}\left(\vec{x}_{i} \mid y_{i}\right)
\end{aligned}
$$

Example: Gaussians

$$
\hat{\Theta}_{M L}=\operatorname{argmin} \sum_{i=0}^{n-1}\left(\ln \left|\Sigma_{y_{i}}\right|+\left(\vec{x}_{i}-\vec{\mu}_{y_{i}}\right)^{T} \Sigma_{y_{i}}^{-1}\left(\vec{x}_{i}-\vec{\mu}_{y_{i}}\right)\right)
$$

If we differentiate, and set the derivative to zero, we get

$$
\begin{aligned}
& \hat{\mu}_{y, M L}=\frac{1}{n_{y}} \sum_{i: y_{i}=y} \vec{x}_{i} \\
& \hat{\Sigma}_{y, M L}=\frac{1}{n_{y}} \sum_{i: y_{i}=y}\left(\vec{x}_{i}-\vec{\mu}_{y}\right)\left(\vec{x}_{i}-\vec{\mu}_{y}\right)^{T}
\end{aligned}
$$

where n_{y} is the number of tokens from class $y_{i}=y$.

Gaussian Mixture Models

A Gaussian mixture model is a pdf with the form:

$$
p_{\vec{x}}(\vec{x})=\sum_{k=0}^{K-1} c_{k} \mathcal{N}\left(\vec{x} \mid \vec{\mu}_{k}, \Sigma_{k}\right)
$$

\ldots where, in order to make sure that $1=\int p_{\vec{x}}(\vec{x}) d \vec{x}$, we have to make sure that

$$
c_{k} \geq 0 \quad \text { and } \quad \sum_{k} c_{k}=1
$$

EM Re-estimation for Gaussian Mixture Models

$$
\begin{aligned}
c_{k} & =\frac{1}{n} \sum_{i=1}^{n} \gamma_{i}(k) \\
\vec{\mu}_{k} & =\frac{\sum_{i} \gamma_{i}(k) \vec{x}_{i}}{\sum_{i} \gamma_{i}(k)} \\
\Sigma_{k} & =\frac{\sum_{i} \gamma_{i}(k)\left(\vec{x}_{i}-\vec{\mu}_{k}\right)\left(\vec{x}_{i}-\vec{\mu}_{k}\right)^{T}}{\sum_{i} \gamma_{i}(k)}
\end{aligned}
$$

where the gamma function is

$$
\gamma_{i}(k)=p\left(k_{i}=k \mid \vec{x}_{i}\right)=\frac{c_{k} \mathcal{N}\left(\vec{x}_{i} \mid \vec{\mu}_{k}, \Sigma_{k}\right)}{\sum_{\ell=1}^{K} c_{\ell} \mathcal{N}\left(\vec{x}_{i} \mid \vec{\mu}_{\ell}, \Sigma_{\ell}\right)}
$$

Outline

(1) Topics
(2) Gaussians and GMM
(3) PCA

4 Expectation Maximization and HMMs
(5) Baum-Welch and Scaled Forward-Backward
(6) Summary

Properties of symmetric matrices

If A is symmetric with D eigenvectors, and D distinct eigenvalues, then

$$
\begin{aligned}
A & =V \Lambda V^{T} \\
\Lambda & =V^{T} A V \\
V V^{T} & =V^{T} V=1
\end{aligned}
$$

Nearest Neighbors Classifier

A "nearest neighbors classifier" makes the following guess: the test vector is an image of the same person as the closest training vector:

$$
\hat{y}_{\text {test }}=y_{m^{*}}, \quad m^{*}=\stackrel{M-1}{\underset{m=0}{\operatorname{argmin}}\left\|\vec{x}_{m}-\vec{x}_{\text {test }}\right\|}
$$

where "closest," here, means Euclidean distance:

$$
\left\|\vec{x}_{m}-\vec{x}_{\text {test }}\right\|=\sqrt{\sum_{d=0}^{D-1}\left(x_{m d}-x_{\text {test }, d}\right)^{2}}
$$

Principal Component Directions

The principal component directions, $V=\left[\vec{v}_{0}, \ldots, \vec{v}_{D-1}\right]$, are the eigenvectors of the sample covariance matrix:

$$
\Sigma=\frac{1}{n-1} V \wedge V^{T},
$$

Σ is the inner product of the centered data matrix, X, with itself:

$$
\Sigma=\frac{1}{n-1} X^{\top} X
$$

where

$$
X=\left[\begin{array}{c}
\left(\vec{x}_{1}-\vec{\mu}\right)^{T} \\
\left(\vec{x}_{2}-\vec{\mu}\right)^{T} \\
\vdots \\
\left(\vec{x}_{n}-\vec{\mu}\right)^{T}
\end{array}\right]
$$

Principal Components

The principal components of a vector \vec{x}_{i} are the elements of its projection onto V :

$$
\vec{y}_{i}=V^{T}\left(\vec{x}_{i}-\vec{\mu}\right)
$$

PCA diagonalizes the covariance

Rotate the whole data matrix into the principal component axes:

$$
Y=\left[\begin{array}{c}
\vec{y}_{1}^{T} \\
\vec{y}_{2}^{T} \\
\vdots \\
\vec{y}_{n}^{T}
\end{array}\right]=X V
$$

The covariance of the rotated data matrix is diagonal:

$$
Y^{T} Y=V^{T} X^{T} X V=\Lambda=\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{D}
\end{array}\right]
$$

Energy Spectrum

The total energy is the same in either the X space or the Y space:
$\sum_{d=1}^{D} \sigma_{d}^{2}=\frac{1}{n-1} \operatorname{trace}\left(X^{T} X\right)=\frac{1}{n-1} \operatorname{trace}\left(Y^{T} Y\right)=\frac{1}{n-1} \sum_{d=1}^{D} \lambda_{d}$
The percent of energy expressed by the first k principal components is:

$$
\operatorname{PoE}(k)=100 \times \frac{\sum_{d=1}^{k} \lambda_{d}}{\sum_{d=1}^{D} \lambda_{D}}
$$

- $X^{T} X$ is usually called the sum-of-squares matrix. $\frac{1}{n-1} X^{T} X$ is the sample covariance.
- $G=X X^{T}$ is called the gram matrix. Its $(i, j)^{\text {th }}$ element is the dot product between the $i^{\text {th }}$ and $j^{\text {th }}$ data samples:

$$
g_{i j}=\left(\vec{x}_{i}-\vec{\mu}\right)^{T}\left(\vec{x}_{j}-\vec{\mu}\right)
$$

- The sum-of-squares matrix and the gram matrix have the same eigenvalues, but different eigenvectors:

$$
\Lambda=V^{\top}\left(X^{\top} X\right) V=U^{T}\left(X X^{T}\right) U
$$

Singular Value Decomposition

ANY $M \times D$ MATRIX, X, can be written as $X=U S V^{T}$.

- $U=\left[\vec{u}_{0}, \ldots, \vec{u}_{M-1}\right]$ are the eigenvectors of $X X^{T}$.
- $V=\left[\vec{v}_{0}, \ldots, \vec{v}_{D-1}\right]$ are the eigenvectors of $X^{\top} X$.
- $S=\left[\begin{array}{ccccc}s_{0} & 0 & 0 & 0 & 0 \\ 0 & \ldots & 0 & 0 & 0 \\ 0 & 0 & s_{\min (D, M)-1} & 0 & 0\end{array}\right]$ are the singular values,

$$
s_{d}=\sqrt{\lambda_{d}}
$$

S has some all-zero columns if $M>D$, or all-zero rows if $M<D$.

Outline

(1) Topics
(2) Gaussians and GMM
(3) PCA

4 Expectation Maximization and HMMs
(5) Baum-Welch and Scaled Forward-Backward
(6) Summary

Expectation Maximization

Expectation maximization maximizes the expected log likelihood, often called the "Q function:"

$$
Q(\Theta, \hat{\Theta})=E\left[\ln p\left(\mathcal{D}_{v}, \mathcal{D}_{h} \mid \Theta\right) \mid \mathcal{D}_{v}, \hat{\Theta}\right]
$$

The Q function is useful because:
(1) For many pdfs, it's possible to find Θ^{*} in one step, where

$$
\Theta^{*}=\underset{\Theta}{\operatorname{argmax}} Q(\Theta, \hat{\Theta})
$$

(2) Θ^{*} is guaranteed to have better likelihood than $\hat{\Theta}$:

$$
\mathcal{L}\left(\Theta^{*}\right) \geq \mathcal{L}(\hat{\Theta})
$$

Hidden Markov Model

(1) Start in state $q_{t}=i$ with pmf π_{i}.
(2) Generate an observation, \vec{x}, with pdf $b_{i}(\vec{x})$.
(3) Transition to a new state, $q_{t+1}=j$, according to pmf $a_{i j}$.
(9) Repeat.

The Three Problems for an HMM

(1) Recognition: Given two different $\mathrm{HMMs}, \Lambda_{1}$ and Λ_{2}, and an observation sequence X. Which HMM was more likely to have produced X ? In other words, $p\left(X \mid \Lambda_{1}\right)>p\left(X \mid \Lambda_{2}\right)$?
(2) Segmentation: What is $p\left(q_{t}=i \mid X, \Lambda\right)$?
(3) Training: Given an initial $\mathrm{HMM} \Lambda$, and an observation sequence X, can we find Λ^{\prime} such that $p\left(X \mid \Lambda^{\prime}\right)>p(X \mid \Lambda)$?

The Forward Algorithm

Definition: $\alpha_{t}(i) \equiv p\left(\vec{x}_{1}, \ldots, \vec{x}_{t}, q_{t}=i \mid \Lambda\right)$. Computation:
(1) Initialize:

$$
\alpha_{1}(i)=\pi_{i} b_{i}\left(\vec{x}_{1}\right), \quad 1 \leq i \leq N
$$

(2) Iterate:

$$
\alpha_{t}(j)=\sum_{i=1}^{N} \alpha_{t-1}(i) a_{i j} b_{j}\left(\vec{x}_{t}\right), \quad 1 \leq j \leq N, 2 \leq t \leq T
$$

(3) Terminate:

$$
p(X \mid \Lambda)=\sum_{i=1}^{N} \alpha_{T}(i)
$$

The Backward Algorithm

Definition: $\beta_{t}(i) \equiv p\left(\vec{x}_{t+1}, \ldots, \vec{x}_{T} \mid q_{t}=i, \Lambda\right)$. Computation:
(1) Initialize:

$$
\beta_{T}(i)=1, \quad 1 \leq i \leq N
$$

(2) Iterate:

$$
\beta_{t}(i)=\sum_{j=1}^{N} a_{i j} b_{j}\left(\vec{x}_{t+1}\right) \beta_{t+1}(j), \quad 1 \leq i \leq N, 1 \leq t \leq T-1
$$

(3) Terminate:

$$
p(X \mid \Lambda)=\sum_{i=1}^{N} \pi_{i} b_{i}\left(\vec{x}_{1}\right) \beta_{1}(i)
$$

Segmentation

(1) The State Posterior:

$$
\gamma_{t}(i)=p\left(q_{t}=i \mid X, \Lambda\right)=\frac{\alpha_{t}(i) \beta_{t}(i)}{\sum_{k=1}^{N} \alpha_{t}(k) \beta_{t}(k)}
$$

(2) The Segment Posterior:

$$
\begin{aligned}
\xi_{t}(i, j) & =p\left(q_{t}=i, q_{t+1}=j \mid X, \Lambda\right) \\
& =\frac{\alpha_{t}(i) a_{i j} b_{j}\left(\vec{x}_{t+1}\right) \beta_{t+1}(j)}{\sum_{k=1}^{N} \sum_{\ell=1}^{N} \alpha_{t}(k) a_{k \ell} b_{\ell}\left(\vec{x}_{t+1}\right) \beta_{t+1}(\ell)}
\end{aligned}
$$

Outline

(1) Topics
(2) Gaussians and GMM
(3) PCA

4 Expectation Maximization and HMMs
(5) Baum-Welch and Scaled Forward-Backward
(6) Summary

The Baum-Welch Algorithm: Initial and Transition Probabilities
(1) Initial State Probabilities:

$$
\pi_{i}^{\prime}=\frac{\sum_{\text {sequences }} \gamma_{1}(i)}{\# \text { sequences }}
$$

(2) Transition Probabilities:

$$
a_{i j}^{\prime}=\frac{\sum_{t=1}^{T-1} \xi_{t}(i, j)}{\sum_{j=1}^{N} \sum_{t=1}^{T-1} \xi_{t}(i, j)}
$$

The Baum-Welch Algorithm: Observation Probabilities

(1) Discrete Observation Probabilities:

$$
b_{j}^{\prime}(k)=\frac{\sum_{t: \vec{x}_{t}=k} \gamma_{t}(j)}{\sum_{t} \gamma_{t}(j)}
$$

(2) Gaussian Observation PDFs:

$$
\begin{gathered}
\vec{\mu}_{i}^{\prime}=\frac{\sum_{t=1}^{T} \gamma_{t}(i) \vec{x}_{t}}{\sum_{t=1}^{T} \gamma_{t}(i)} \\
\Sigma_{i}^{\prime}=\frac{\sum_{t=1}^{T} \gamma_{t}(i)\left(\vec{x}_{t}-\vec{\mu}_{i}\right)\left(\vec{x}_{t}-\vec{\mu}_{i}\right)^{T}}{\sum_{t=1}^{T} \gamma_{t}(i)}
\end{gathered}
$$

Scaled Forward Algorithm: The Variables

The scaled forward algorithm uses not just one, but three variables:
(1) The intermediate forward probability:

$$
\tilde{\alpha}_{t}(j)=p\left(q_{t}=j, \vec{x}_{t} \mid \vec{x}_{1}, \ldots, \vec{x}_{t-1}, \Lambda\right)
$$

(2) The scaling factor:

$$
g_{t}=p\left(\vec{x}_{t} \mid \vec{x}_{1}, \ldots, \vec{x}_{t-1}, \Lambda\right)
$$

(3) The scaled forward probability:

$$
\hat{\alpha}_{t}(j)=p\left(q_{t}=j \mid \vec{x}_{1}, \ldots, \vec{x}_{t}, \Lambda\right)
$$

The Scaled Forward Algorithm

(1) Initialize:

$$
\hat{\alpha}_{1}(i)=\frac{1}{g_{1}} \pi_{i} b_{i}\left(\vec{x}_{1}\right)
$$

(2) Iterate:

$$
\begin{aligned}
\tilde{\alpha}_{t}(j) & =\sum_{i=1}^{N} \hat{\alpha}_{t-1}(i) a_{i j} b_{j}\left(\vec{x}_{t}\right) \\
g_{t} & =\sum_{j=1}^{N} \tilde{\alpha}_{t}(j) \\
\hat{\alpha}_{t}(j) & =\frac{1}{g_{t}} \tilde{\alpha}_{t}(j)
\end{aligned}
$$

(3) Terminate:

$$
\ln p(X \mid \Lambda)=\sum_{t=1}^{T} \ln g_{t}
$$

The Scaled Backward Algorithm

This can also be done for the backward algorithm:
(1) Initialize:

$$
\hat{\beta}_{T}(i)=1, \quad 1 \leq i \leq N
$$

(2) Iterate:

$$
\begin{aligned}
& \tilde{\beta}_{t}(i)=\sum_{j=1}^{N} a_{i j} b_{j}\left(\vec{x}_{t+1}\right) \hat{\beta}_{t+1}(j) \\
& \hat{\beta}_{t}(i)=\frac{1}{c_{t}} \tilde{\beta}_{t}(i)
\end{aligned}
$$

Rabiner uses $c_{t}=g_{t}$, but I recommend instead that you use

$$
c_{t}=\max _{i} \tilde{\beta}_{t}(i)
$$

State and Segment Posteriors, using the Scaled

 Forward-Backward AlgorithmBecause both g_{t} and c_{t} are independent of the state number i, we can use $\hat{\alpha}$ and $\hat{\beta}$ in place of α and β :
(1) The State Posterior:

$$
\gamma_{t}(i)=p\left(q_{t}=i \mid X, \Lambda\right)=\frac{\hat{\alpha}_{t}(i) \hat{\beta}_{t}(i)}{\sum_{k=1}^{N} \hat{\alpha}_{t}(k) \hat{\beta}_{t}(k)}
$$

(2) The Segment Posterior:

$$
\begin{aligned}
\xi_{t}(i, j) & =p\left(q_{t}=i, q_{t+1}=j \mid X, \Lambda\right) \\
& =\frac{\hat{\alpha}_{t}(i) a_{i j} b_{j}\left(\vec{x}_{t+1}\right) \hat{\beta}_{t+1}(j)}{\sum_{k=1}^{N} \sum_{\ell=1}^{N} \hat{\alpha}_{t}(k) a_{k \ell} b_{\ell}\left(\vec{x}_{t+1}\right) \hat{\beta}_{t+1}(\ell)}
\end{aligned}
$$

Outline

(1) Topics
(2) Gaussians and GMM
(3) PCA

44 Expectation Maximization and HMMs
(5) Baum-Welch and Scaled Forward-Backward
(6) Summary

Summary: Topics

(1) HW3 (lec. 8, 11): Gaussians, classifiers, and GMMs

- Reading: A Gentle Tutorial...
(2) MP3 (lec. 12): PCA
- Reading: Face Recognition Using Eigenfaces
(3) HW4 (lec. 13-14): EM, HMMs
- Reading: A Tutorial...
(9) MP4 (lec. 15-16): Baum-Welch, scaled forward-backward

