Lecture 19: Exam 2 Review

Mark Hasegawa-Johnson

ECE 417: Multimedia Signal Processing, Fall 2021
1. Topics

2. Gaussians and GMM

3. PCA

4. Expectation Maximization and HMMs

5. Baum-Welch and Scaled Forward-Backward

6. Summary
Outline

1. Topics
2. Gaussians and GMM
3. PCA
4. Expectation Maximization and HMMs
5. Baum-Welch and Scaled Forward-Backward
6. Summary
 HW3 (lec. 8, 11): Gaussians, classifiers, and GMMs
 • Reading: *A Gentle Tutorial...*

 MP3 (lec. 12): PCA
 • Reading: *Face Recognition Using Eigenfaces*

 HW4 (lec. 13-14): EM, HMMs
 • Reading: *A Tutorial...*

 MP4 (lec. 15-16): Baum-Welch, scaled forward-backward
Outline

1. Topics
2. Gaussians and GMM
3. PCA
4. Expectation Maximization and HMMs
5. Baum-Welch and Scaled Forward-Backward
6. Summary
Multivariate Gaussian

$$p_{\bar{x}}(\bar{x}) = \frac{1}{(2\pi)^{D/2}|\Sigma|^{1/2}} e^{-\frac{1}{2}(\bar{x} - \bar{\mu})^T \Sigma^{-1}(\bar{x} - \bar{\mu})}$$
A contour plot of the Gaussian pdf is a set of ellipses. Each ellipse shows the set of points where the Mahalanobis distance $d_{\Sigma}(\vec{x}, \vec{\mu})$ is equal to a constant:

$$d_{\Sigma}(\vec{x}, \vec{\mu}) = (\vec{x} - \vec{\mu})^T \Sigma^{-1} (\vec{x} - \vec{\mu})$$

For example, if the covariance matrix is diagonal, then

$$d_{\Sigma}(\vec{x}, \vec{\mu}) = \sum_{d=1}^{D} \frac{(x_d - \mu_d)^2}{\sigma_d^2}$$

if $\Sigma = \begin{bmatrix} \sigma_1^2 & 0 & \cdots & 0 \\ 0 & \sigma_2^3 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_D^2 \end{bmatrix}$
A Bayesian classifier chooses a label, $y \in \{0 \ldots N_Y - 1\}$, that has the minimum probability of error given an observation, $\vec{x} \in \mathbb{R}^D$:

$$
\hat{y} = \arg\min_y \Pr\left\{ Y \neq y | \vec{X} = \vec{x} \right\} = \arg\max_y \Pr\left\{ Y = y | \vec{X} = \vec{x} \right\} = \arg\max_y p_Y(\hat{y}) p_{\vec{X}|Y}(\vec{x}|y)
$$
The four Bayesian probabilities

- The **posterior** and **evidence**, $p_{Y|\bar{X}}(y|\bar{x})$ and $p_{\bar{X}}(\bar{x})$, can only be learned if you have lots and lots of training data.
- The **prior**, $p_Y(y)$, is very easy to learn.
- The **likelihood**, $p_{\bar{X}|Y}(\bar{x}|y)$ can be learned from a medium-sized training corpus, if you use a parametric model like a Gaussian or GMM.
Maximum likelihood estimation finds the parameters that maximize the likelihood of the data.

\[
\hat{\Theta}_{ML} = \text{argmax } p(\mathcal{D}|\Theta)
\]

Usually we assume that the data are sampled independently and identically distributed, so that

\[
\hat{\Theta}_{ML} = \text{argmax} \prod_{i=0}^{n-1} p_{\bar{X}|Y}(\bar{x}_i|y_i) \\
= \text{argmax} \sum_{i=0}^{n-1} \ln p_{\bar{X}|Y}(\bar{x}_i|y_i)
\]
Example: Gaussians

\[\hat{\Theta}_{ML} = \arg \min_{\Theta} \sum_{i=0}^{n-1} \left(\ln |\Sigma_{y_i}| + (\vec{x}_i - \vec{\mu}_{y_i})^T \Sigma_{y_i}^{-1} (\vec{x}_i - \vec{\mu}_{y_i}) \right) \]

If we differentiate, and set the derivative to zero, we get

\[\hat{\mu}_{y,ML} = \frac{1}{n_y} \sum_{i:y_i=y} \vec{x}_i \]

\[\hat{\Sigma}_{y,ML} = \frac{1}{n_y} \sum_{i:y_i=y} (\vec{x}_i - \vec{\mu}_y)(\vec{x}_i - \vec{\mu}_y)^T \]

where \(n_y \) is the number of tokens from class \(y_i = y \).
A Gaussian mixture model is a pdf with the form:

\[p_{\vec{X}}(\vec{x}) = \sum_{k=0}^{K-1} c_k \mathcal{N}(\vec{x} | \vec{\mu}_k, \Sigma_k) \]

...where, in order to make sure that \(1 = \int p_{\vec{X}}(\vec{x}) d\vec{x} \), we have to make sure that

\[c_k \geq 0 \quad \text{and} \quad \sum_k c_k = 1 \]
EM Re-estimation for Gaussian Mixture Models

\[c_k = \frac{1}{n} \sum_{i=1}^{n} \gamma_i(k), \]

\[\mu_k = \frac{\sum_i \gamma_i(k) \vec{x}_i}{\sum_i \gamma_i(k)}, \]

\[\Sigma_k = \frac{\sum_i \gamma_i(k) (\vec{x}_i - \mu_k)(\vec{x}_i - \mu_k)^T}{\sum_i \gamma_i(k)} \]

where the gamma function is

\[\gamma_i(k) = p(k_i = k|\vec{x}_i) = \frac{c_k \mathcal{N}(\vec{x}_i|\mu_k, \Sigma_k)}{\sum_{\ell=1}^{K} c_{\ell} \mathcal{N}(\vec{x}_i|\mu_{\ell}, \Sigma_{\ell})} \]
Properties of symmetric matrices

If A is symmetric with D eigenvectors, and D distinct eigenvalues, then

$$A = V \Lambda V^T$$

$$\Lambda = V^T A V$$

$$VV^T = V^T V = I$$
A “nearest neighbors classifier” makes the following guess: the test vector is an image of the same person as the closest training vector:

\[\hat{y}_{\text{test}} = y_{m^*}, \quad m^* = \arg\min_{m=0}^{M-1} \| \vec{x}_m - \vec{x}_{\text{test}} \| \]

where “closest,” here, means Euclidean distance:

\[\| \vec{x}_m - \vec{x}_{\text{test}} \| = \sqrt{\sum_{d=0}^{D-1} (x_{md} - x_{\text{test},d})^2} \]
Principal Component Directions

The principal component directions, $V = [\vec{v}_0, \ldots, \vec{v}_{D-1}]$, are the eigenvectors of the sample covariance matrix:

$$
\Sigma = \frac{1}{n-1} V \Lambda V^T,
$$

Σ is the inner product of the centered data matrix, X, with itself:

$$
\Sigma = \frac{1}{n-1} X^T X
$$

where

$$
X = \begin{bmatrix}
(\vec{x}_1 - \vec{\mu})^T \\
(\vec{x}_2 - \vec{\mu})^T \\
\vdots \\
(\vec{x}_n - \vec{\mu})^T
\end{bmatrix}
$$
Principal Components

The principal components of a vector \vec{x}_i are the elements of its projection onto V:

$$\vec{y}_i = V^T (\vec{x}_i - \mu)$$
PCA diagonalizes the covariance

Rotate the whole data matrix into the principal component axes:

\[Y = \begin{bmatrix} \vec{y}_1^T \\ \vec{y}_2^T \\ \vdots \\ \vec{y}_n^T \end{bmatrix} = XV \]

The covariance of the rotated data matrix is diagonal:

\[Y^T Y = V^T X^T XV = \Lambda = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_D \end{bmatrix} \]
Energy Spectrum

The total energy is the same in either the X space or the Y space:

$$
\sum_{d=1}^{D} \sigma_d^2 = \frac{1}{n-1} \text{trace} \left(X^T X \right) = \frac{1}{n-1} \text{trace} \left(Y^T Y \right) = \frac{1}{n-1} \sum_{d=1}^{D} \lambda_d
$$

The percent of energy expressed by the first k principal components is:

$$
\text{PoE}(k) = 100 \times \frac{\sum_{d=1}^{k} \lambda_d}{\sum_{d=1}^{D} \lambda_d}
$$
Gram Matrix

- X^TX is usually called the sum-of-squares matrix. $\frac{1}{n-1}X^TX$ is the sample covariance.
- $G = XX^T$ is called the gram matrix. Its $(i,j)^{th}$ element is the dot product between the i^{th} and j^{th} data samples:

$$g_{ij} = (\tilde{x}_i - \bar{\mu})^T(\tilde{x}_j - \bar{\mu})$$

- The sum-of-squares matrix and the gram matrix have the same eigenvalues, but different eigenvectors:

$$\Lambda = V^T(X^TX)V = U^T(XX^T)U$$
ANY $M \times D$ MATRIX, X, can be written as $X = USV^T$.

- $U = [\vec{u}_0, \ldots, \vec{u}_{M-1}]$ are the eigenvectors of XX^T.
- $V = [\vec{v}_0, \ldots, \vec{v}_{D-1}]$ are the eigenvectors of X^TX.
- $S = \begin{bmatrix} s_0 & 0 & 0 & 0 & 0 \\ 0 & \ldots & 0 & 0 & 0 \\ 0 & 0 & s_{\min(D,M)-1} & 0 & 0 \end{bmatrix}$ are the singular values,

$s_d = \sqrt{\lambda_d}$.

S has some all-zero columns if $M > D$, or all-zero rows if $M < D$.
Outline

1. Topics
2. Gaussians and GMM
3. PCA
4. Expectation Maximization and HMMs
5. Baum-Welch and Scaled Forward-Backward
6. Summary
Expectation Maximization

Expectation maximization maximizes the expected log likelihood, often called the “Q function:”

\[Q(\Theta, \hat{\Theta}) = E \left[\ln p(D_v, D_h | \Theta) \middle| D_v, \hat{\Theta} \right] \]

The Q function is useful because:

1. For many pdfs, it’s possible to find \(\Theta^* \) in one step, where

\[\Theta^* = \arg\max_{\Theta} Q(\Theta, \hat{\Theta}) \]

2. \(\Theta^* \) is guaranteed to have better likelihood than \(\hat{\Theta} \):

\[\mathcal{L}(\Theta^*) \geq \mathcal{L}(\hat{\Theta}) \]
Hidden Markov Model

1. Start in state $q_t = i$ with pmf π_i.
2. Generate an observation, \vec{x}, with pdf $b_i(\vec{x})$.
3. Transition to a new state, $q_{t+1} = j$, according to pmf a_{ij}.
4. Repeat.
The Three Problems for an HMM

1. **Recognition**: Given two different HMMs, Λ_1 and Λ_2, and an observation sequence X. Which HMM was more likely to have produced X? In other words, $p(X|\Lambda_1) > p(X|\Lambda_2)$?

2. **Segmentation**: What is $p(q_t = i|X, \Lambda)$?

3. **Training**: Given an initial HMM Λ, and an observation sequence X, can we find Λ' such that $p(X|\Lambda') > p(X|\Lambda)$?
The Forward Algorithm

Definition: \(\alpha_t(i) \equiv p(\vec{x}_1, \ldots, \vec{x}_t, q_t = i | \Lambda) \). Computation:

1. **Initialize:**
 \[
 \alpha_1(i) = \pi_i b_i(\vec{x}_1), \quad 1 \leq i \leq N
 \]

2. **Iterate:**
 \[
 \alpha_t(j) = \sum_{i=1}^{N} \alpha_{t-1}(i) a_{ij} b_j(\vec{x}_t), \quad 1 \leq j \leq N, \quad 2 \leq t \leq T
 \]

3. **Terminate:**
 \[
 p(X|\Lambda) = \sum_{i=1}^{N} \alpha_T(i)
 \]
The Backward Algorithm

Definition: \(\beta_t(i) \equiv p(\vec{x}_{t+1}, \ldots, \vec{x}_T | q_t = i, \Lambda) \). Computation:

1. **Initialize:**
 \[
 \beta_T(i) = 1, \quad 1 \leq i \leq N
 \]

2. **Iterate:**
 \[
 \beta_t(i) = \sum_{j=1}^{N} a_{ij} b_j(\vec{x}_{t+1}) \beta_{t+1}(j), \quad 1 \leq i \leq N, \quad 1 \leq t \leq T - 1
 \]

3. **Terminate:**
 \[
 p(X | \Lambda) = \sum_{i=1}^{N} \pi_i b_i(\vec{x}_1) \beta_1(i)
 \]
Segmentation

1. The State Posterior:

\[\gamma_t(i) = p(q_t = i|X, \Lambda) = \frac{\alpha_t(i) \beta_t(i)}{\sum_{k=1}^{N} \alpha_t(k) \beta_t(k)} \]

2. The Segment Posterior:

\[\xi_t(i, j) = p(q_t = i, q_{t+1} = j|X, \Lambda) = \frac{\alpha_t(i) a_{ij} b_j(\vec{x}_{t+1}) \beta_{t+1}(j)}{\sum_{k=1}^{N} \sum_{\ell=1}^{N} \alpha_t(k) a_{k\ell} b_\ell(\vec{x}_{t+1}) \beta_{t+1}(\ell)} \]
Outline

1. Topics
2. Gaussians and GMM
3. PCA
4. Expectation Maximization and HMMs
5. Baum-Welch and Scaled Forward-Backward
6. Summary
The Baum-Welch Algorithm: Initial and Transition Probabilities

1. **Initial State Probabilities:**

 \[
 \pi'_i = \frac{\sum_{\text{sequences}} \gamma_1(i)}{\# \text{ sequences}}
 \]

2. **Transition Probabilities:**

 \[
 a'_{ij} = \frac{\sum_{t=1}^{T-1} \xi_t(i,j)}{\sum_{j=1}^{N} \sum_{t=1}^{T-1} \xi_t(i,j)}
 \]
The Baum-Welch Algorithm: Observation Probabilities

1. **Discrete Observation Probabilities:**

 \[b'_j(k) = \frac{\sum_{t: x_t = k} \gamma_t(j)}{\sum_t \gamma_t(j)} \]

2. **Gaussian Observation PDFs:**

 \[\bar{\mu}'_i = \frac{\sum_{t=1}^{T} \gamma_t(i) \bar{x}_t}{\sum_{t=1}^{T} \gamma_t(i)} \]

 \[\Sigma'_i = \frac{\sum_{t=1}^{T} \gamma_t(i)(\bar{x}_t - \bar{\mu}_i)(\bar{x}_t - \bar{\mu}_i)^T}{\sum_{t=1}^{T} \gamma_t(i)} \]
The scaled forward algorithm uses not just one, but three variables:

1. The intermediate forward probability:
 \[\tilde{\alpha}_t(j) = p(q_t = j, \tilde{x}_t|\tilde{x}_1, \ldots, \tilde{x}_{t-1}, \Lambda) \]

2. The scaling factor:
 \[g_t = p(\tilde{x}_t|\tilde{x}_1, \ldots, \tilde{x}_{t-1}, \Lambda) \]

3. The scaled forward probability:
 \[\hat{\alpha}_t(j) = p(q_t = j|\tilde{x}_1, \ldots, \tilde{x}_t, \Lambda) \]
The Scaled Forward Algorithm

1. **Initialize:**

 \[\hat{\alpha}_1(i) = \frac{1}{g_1} \pi_i b_i(x_1) \]

2. **Iterate:**

 \[\tilde{\alpha}_t(j) = \sum_{i=1}^{N} \hat{\alpha}_{t-1}(i)a_{ij}b_j(x_t) \]
 \[g_t = \sum_{j=1}^{N} \tilde{\alpha}_t(j) \]
 \[\hat{\alpha}_t(j) = \frac{1}{g_t} \tilde{\alpha}_t(j) \]

3. **Terminate:**

 \[\ln p(X|\Lambda) = \sum_{t=1}^{T} \ln g_t \]
This can also be done for the backward algorithm:

1. **Initialize:**

\[\tilde{\beta}_T(i) = 1, \quad 1 \leq i \leq N \]

2. **Iterate:**

\[
\tilde{\beta}_t(i) = \sum_{j=1}^{N} a_{ij} b_j(x_{t+1}) \tilde{\beta}_{t+1}(j)
\]

Rabiner uses \(c_t = g_t \), but I recommend instead that you use

\[c_t = \max_i \tilde{\beta}_t(i) \]
State and Segment Posteriors, using the Scaled Forward-Backward Algorithm

Because both g_t and c_t are independent of the state number i, we can use $\hat{\alpha}$ and $\hat{\beta}$ in place of α and β:

1. **The State Posterior:**

 $$\gamma_t(i) = p(q_t = i|X, \Lambda) = \frac{\hat{\alpha}_t(i)\hat{\beta}_t(i)}{\sum_{k=1}^{N} \hat{\alpha}_t(k)\hat{\beta}_t(k)}$$

2. **The Segment Posterior:**

 $$\xi_t(i, j) = p(q_t = i, q_{t+1} = j|X, \Lambda) = \frac{\hat{\alpha}_t(i)a_{ij}b_j(\vec{x}_{t+1})\hat{\beta}_{t+1}(j)}{\sum_{k=1}^{N} \sum_{\ell=1}^{N} \hat{\alpha}_t(k)a_{k\ell}b_{\ell}(\vec{x}_{t+1})\hat{\beta}_{t+1}(\ell)}$$
Outline

1. Topics
2. Gaussians and GMM
3. PCA
4. Expectation Maximization and HMMs
5. Baum-Welch and Scaled Forward-Backward
6. Summary
Summary: Topics

1. HW3 (lec. 8, 11): Gaussians, classifiers, and GMMs
 - Reading: A Gentle Tutorial...
2. MP3 (lec. 12): PCA
 - Reading: Face Recognition Using Eigenfaces
3. HW4 (lec. 13-14): EM, HMMs
 - Reading: A Tutorial...
4. MP4 (lec. 15-16): Baum-Welch, scaled forward-backward