
Review Learning Gradient Back-Propagation Derivatives Backprop Example BCE Loss CE Loss Summary

Lecture 18: Backpropagation

Mark Hasegawa-Johnson

ECE 417: Multimedia Signal Processing, Fall 2021

Review Learning Gradient Back-Propagation Derivatives Backprop Example BCE Loss CE Loss Summary

1 Review: Neural Network

2 Learning the Parameters of a Neural Network

3 Definitions of Gradient, Partial Derivative, and Flow Graph

4 Back-Propagation

5 Computing the Weight Derivatives

6 Backprop Example: Semicircle → Parabola

7 Binary Cross Entropy Loss

8 Multinomial Classifier: Cross-Entropy Loss

9 Summary

Review Learning Gradient Back-Propagation Derivatives Backprop Example BCE Loss CE Loss Summary

Outline

1 Review: Neural Network

2 Learning the Parameters of a Neural Network

3 Definitions of Gradient, Partial Derivative, and Flow Graph

4 Back-Propagation

5 Computing the Weight Derivatives

6 Backprop Example: Semicircle → Parabola

7 Binary Cross Entropy Loss

8 Multinomial Classifier: Cross-Entropy Loss

9 Summary

Review Learning Gradient Back-Propagation Derivatives Backprop Example BCE Loss CE Loss Summary

Two-Layer Feedforward Neural Network

1 x1 x2 . . . xD ~x is the input vector

ξ
(1)
k = b

(1)
k +

∑D
j=1 w

(1)
kj xj

1 h1 h2
. . . hN hk = σ(ξ

(1)
k)

ξ
(2)
k = b

(2)
k +

∑N
j=1 w

(2)
kj hj

ŷ1 ŷ2
. . . ŷK ŷk = ξ

(2)
k

ŷ = f (~x ,W (1), ~b(1),W (2), ~b(2))

Review Learning Gradient Back-Propagation Derivatives Backprop Example BCE Loss CE Loss Summary

Review: Second Layer = Piece-Wise Approximation

The second layer of the network approximates ŷ using a bias term
~b, plus correction vectors ~w

(2)
j , each scaled by its activation hj :

ŷ = ~b(2) +
∑
j

~w
(2)
j hj

The activation, hj , is a number between 0 and 1. For example, we
could use the logistic sigmoid function:

hk = σ
(
ξ

(1)
k

)
=

1

1 + exp(−ξ(1)
k)
∈ (0, 1)

The logistic sigmoid is a differentiable approximation to a unit step
function.

Review Learning Gradient Back-Propagation Derivatives Backprop Example BCE Loss CE Loss Summary

Review: First Layer = A Series of Decisions

The first layer of the network decides whether or not to “turn on”
each of the hj ’s. It does this by comparing ~x to a series of linear
threshold vectors:

hk = σ
(
w̄

(1)
k ~x

)
≈

{
1 w̄

(1)
k ~x > 0

0 w̄
(1)
k ~x < 0

Review Learning Gradient Back-Propagation Derivatives Backprop Example BCE Loss CE Loss Summary

Outline

1 Review: Neural Network

2 Learning the Parameters of a Neural Network

3 Definitions of Gradient, Partial Derivative, and Flow Graph

4 Back-Propagation

5 Computing the Weight Derivatives

6 Backprop Example: Semicircle → Parabola

7 Binary Cross Entropy Loss

8 Multinomial Classifier: Cross-Entropy Loss

9 Summary

Review Learning Gradient Back-Propagation Derivatives Backprop Example BCE Loss CE Loss Summary

How to train a neural network

1 Find a training dataset that contains n examples showing
the desired output, ~yi , that the NN should compute in
response to input vector ~xi :

D = {(~x1, ~y1), . . . , (~xn, ~yn)}

2 Randomly initialize W (1), ~b(1), W (2), and ~b(2).

3 Perform forward propagation: find out what the neural net
computes as ŷi for each ~xi .

4 Define a loss function that measures how badly ŷ differs
from ~y .

5 Perform back propagation to find the derivative of the loss
w.r.t. W (1), ~b(1), W (2), and ~b(2).

6 Perform gradient descent to improve W (1), ~b(1), W (2), and
~b(2).

7 Repeat steps 3-6 until convergence.

Review Learning Gradient Back-Propagation Derivatives Backprop Example BCE Loss CE Loss Summary

Loss Function: How should y be “similar to” ŷ?

Minimum Mean Squared Error (MMSE)

W ∗, b∗ = arg minL = arg min
1

2n

n∑
i=1

‖~yi − ŷ(~xi)‖2

MMSE Solution: ŷ → E [~y |~x]

If the training samples (~xi , ~yi) are i.i.d., then

lim
n→∞

L =
1

2
E
[
‖~y − ŷ‖2

]
which is minimized by

ŷMMSE (~x) = E [~y |~x]

Review Learning Gradient Back-Propagation Derivatives Backprop Example BCE Loss CE Loss Summary

Gradient Descent: How do we improve W and b?

Given some initial neural net parameter (called ukj in this figure),
we want to find a better value of the same parameter. We do that
using gradient descent:

ukj ← ukj − η
dL
dukj

,

where η is a learning rate (some small constant, e.g., η = 0.02 or
so).

Review Learning Gradient Back-Propagation Derivatives Backprop Example BCE Loss CE Loss Summary

Gradient Descent = Local Optimization

Given an initial W , b, find new values of W , b with lower error.

w
(1)
kj ← w

(1)
kj − η

dL
dw

(1)
kj

w
(2)
kj ← w

(2)
kj − η

dL
dw

(2)
kj

η =Learning Rate

If η too large, gradient descent won’t converge. If too small,
convergence is slow.

Second-order methods like Newton’s method, L-BFGS and
Adam choose an optimal η at each step, so they’re MUCH
faster.

Review Learning Gradient Back-Propagation Derivatives Backprop Example BCE Loss CE Loss Summary

Outline

1 Review: Neural Network

2 Learning the Parameters of a Neural Network

3 Definitions of Gradient, Partial Derivative, and Flow Graph

4 Back-Propagation

5 Computing the Weight Derivatives

6 Backprop Example: Semicircle → Parabola

7 Binary Cross Entropy Loss

8 Multinomial Classifier: Cross-Entropy Loss

9 Summary

Review Learning Gradient Back-Propagation Derivatives Backprop Example BCE Loss CE Loss Summary

Digression: What is a Gradient?

The gradient of a scalar function, f (~w), with respect to the vector
~w can be usefully defined as

∇~w f =

∂f
∂w1
∂f
∂w2

...
∂f
∂wN

 , where ~w =

w1

w2
...

wN

 .
Here the partial derivative sign, ∂, means “the derivative while all
other elements of ~w are held constant.”

Review Learning Gradient Back-Propagation Derivatives Backprop Example BCE Loss CE Loss Summary

Digression: Total Derivative vs. Partial Derivative

The notation dL
dw

(2)
kj

means “the total derivative of L with

respect to w
(2)
kj .” It implies that we have to add up several

different ways in which L depends on w
(2)
kj , for example,

dL
dw

(2)
kj

=
n∑

i=1

(
dL
dŷki

) ∂ŷki

∂w
(2)
kj

The notation ∂L

∂ŷki
means “partial derivative.” It means “hold

other variables constant while calculating this derivative.”

The next obvious question to ask is: which other variables
should I hold constant?

Review Learning Gradient Back-Propagation Derivatives Backprop Example BCE Loss CE Loss Summary

Flow Graph

A signal flow graph shows the flow of computations in a system.
For example, the following graph shows that y is a function of
{g , h}, g is a function of {x , z}, and h is a function of {x , z}:

x

z

g

h

y

Review Learning Gradient Back-Propagation Derivatives Backprop Example BCE Loss CE Loss Summary

The Total Derivative Rule

The total derivative rule says that the derivative of the output
with respect to any one input can be computed as the sum of
partial times total, summed across all paths from input to output:

∂y

∂x
=

(
∂y

∂g

)(
dg

dx

)
+

(
∂y

∂h

)(
dh

dx

)

x

z

g

h

y

Review Learning Gradient Back-Propagation Derivatives Backprop Example BCE Loss CE Loss Summary

Partial with respect to What?

The difference between partial derivative and total derivative
only makes sense in light of the total derivative rule. For example,
in this equation

∂y

∂x
=

(
∂y

∂g

)(
dg

dx

)
+

(
∂y

∂h

)(
dh

dx

)

The symbol ∂y
∂g means “the derivative of y with respect to g

while holding h constant.”

The symbol dg
dx means “the derivative of g with respect to x ,

without holding h constant.”

For today’s lecture, the difference between partial and total
derivative doesn’t matter much, because it doesn’t matter
whether you hold h constant or not. When we get into
recurrent neural networks, later, such things will start to
matter, so we’ll discuss this point again at that time.

Review Learning Gradient Back-Propagation Derivatives Backprop Example BCE Loss CE Loss Summary

Outline

1 Review: Neural Network

2 Learning the Parameters of a Neural Network

3 Definitions of Gradient, Partial Derivative, and Flow Graph

4 Back-Propagation

5 Computing the Weight Derivatives

6 Backprop Example: Semicircle → Parabola

7 Binary Cross Entropy Loss

8 Multinomial Classifier: Cross-Entropy Loss

9 Summary

Review Learning Gradient Back-Propagation Derivatives Backprop Example BCE Loss CE Loss Summary

Computing the Gradient: Notation

~xi = [x1i , . . . , xDi]
T is the i th input vector.

~yi = [y1i , . . . , yKi]
T is the i th target vector (desired output).

ŷi = [ŷ1i , . . . , ŷKi]
T is the i th hypothesis vector (computed

output).
~ξ

(l)
i = [ξ

(l)
1i , . . . , ξ

(l)
Ni]T is the excitation vector after the l th

layer, in response to the i th input.
~hi = [h1i , . . . , hNi]

T is the hidden nodes activation vector in
response to the i th input. (No superscript necessary if there’s
only one hidden layer).

The weight matrix for the l th layer is

W (l) =
[
~w

(l)
1 , . . . , ~w

(l)
j , . . .

]
=

w

(l)
11 · · · w

(l)
1j · · ·

...
. . .

...
. . .

w
(l)
k1 · · · w

(l)
kj · · ·

...
. . .

...
. . .

Review Learning Gradient Back-Propagation Derivatives Backprop Example BCE Loss CE Loss Summary

Two-Layer Feedforward Neural Network

1 x1 x2 . . . xD ~x is the input vector

ξ
(1)
k = b

(1)
k +

∑D
j=1 w

(1)
kj xj

1 h1 h2
. . . hN hk = σ(ξ

(1)
k)

ξ
(2)
k = b

(2)
k +

∑N
j=1 w

(2)
kj hj

ŷ1 ŷ2
. . . ŷK ŷk = ξ

(2)
k

ŷ = f (~x ,W (1), ~b(1),W (2), ~b(2))

Review Learning Gradient Back-Propagation Derivatives Backprop Example BCE Loss CE Loss Summary

Two-Layer Feedforward Neural Network

1 x1 x2 . . . xD ~x is the input vector

~ξ(1) = ~b(1) + W (1)~x

1 h1 h2
. . . hN ~h = σ(~ξ(1))

~ξ(2) = ~b(2) + W (2)~h

ŷ1 ŷ2
. . . ŷK ŷ = ~ξ(2)

ŷ = f (~x ,W (1), ~b(1),W (2), ~b(2))

Review Learning Gradient Back-Propagation Derivatives Backprop Example BCE Loss CE Loss Summary

Back-Propagation

Back-propagation just works backward through this network,

calculating the derivative of L with respect to ŷ , then ~ξ(2), then ~h,

then ~ξ(1):

1 x1 x2 . . . xD ~x is the input vector

~ξ(1) = ~b(1) + W (1)~x

1 h1 h2
. . . hN ~h = σ(~ξ(1))

~ξ(2) = ~b(2) + W (2)~h

ŷ1 ŷ2
. . . ŷK ŷ = ~ξ(2)

ŷ = f (~x ,W (1), ~b(1),W (2), ~b(2))

Review Learning Gradient Back-Propagation Derivatives Backprop Example BCE Loss CE Loss Summary

Back-Propagation: Derivative w.r.t Output-Layer
Activations

Remember that the loss function is mean-squared error:

L =
1

2n

n∑
i=1

‖~yi − ŷi‖2

=
1

2n

n∑
i=1

K∑
k=1

(~yi ,k − ŷi ,k)2

So:

∂L
∂ŷi ,k

=
1

n
(ŷi ,k − yi ,k)

Review Learning Gradient Back-Propagation Derivatives Backprop Example BCE Loss CE Loss Summary

Back-Propagation: Derivative w.r.t Output-Layer
Excitations

In our network, the output layer is linear, so

ŷi ,k = ξ
(2)
i ,k

Therefore:

∂L
∂ξ

(2)
i ,k

=
1

n
(ŷi ,k − yi ,k)

Review Learning Gradient Back-Propagation Derivatives Backprop Example BCE Loss CE Loss Summary

The back-prop deltas: derivative w.r.t. excitations

In order to keep going systematically, it’s useful to define a
back-propagation partial derivative:

δ
(2)
i ,k ≡

∂L
∂ξ

(2)
i ,k

These deltas are sometimes called the excitation gradients:

~δ
(2)
i = ∇~ξ(2)

i

L

Review Learning Gradient Back-Propagation Derivatives Backprop Example BCE Loss CE Loss Summary

Back-Propagation: Derivative w.r.t Hidden-Layer
Activations

The mapping from hidden-layer activations to output-layer
excitations is

ξ
(2)
i ,k = b

(2)
k +

N∑
j=1

w
(2)
k,j hi ,j

Notice that the loss, L, depends on hi ,j via all of the different

paths through all of the different ξ
(2)
i ,k output excitations. The

total derivative rule therefore gives us:

∂L
∂hi ,j

=
K∑

k=1

 ∂L
∂ξ

(2)
i ,k

∂ξ(2)
i ,k

∂hi ,j

=

K∑
k=1

δ
(2)
i ,k w

(2)
k,j

Review Learning Gradient Back-Propagation Derivatives Backprop Example BCE Loss CE Loss Summary

Back-Propagation: Derivative w.r.t Hidden-Layer
Activations

The mapping from hidden-layer activations to output-layer
excitations is

~ξ
(2)
i = ~b(2) + W (2)~hi

Notice that the loss, L, depends on hj ,i via all of the different

paths through all of the different ξ
(2)
k,i output excitations. The total

derivative rule therefore gives us the following surprising rule:

∇~hiL = W (2),T∇~ξ(2)
i

L

= W (2),T~δ
(2)
i

Review Learning Gradient Back-Propagation Derivatives Backprop Example BCE Loss CE Loss Summary

Back-Propagation: Derivative w.r.t Hidden-Layer
Excitations

The mapping from hidden-layer excitations to hidden-layer
activations is much simpler:

hi ,j = σ(ξ
(1)
i ,j)

So

∂L
∂ξ

(1)
i ,j

=

(
∂L
∂hi ,j

) ∂hi ,j

∂ξ
(1)
i ,j

=

(
K∑

k=1

w
(2)
k,j δ

(2)
i ,j

)(
σ̇
(
ξ

(1)
i ,j

))
where σ̇(·), the derivative of the scalar nonlinearity σ(·), is
something you can calculate in advance, and store.

Review Learning Gradient Back-Propagation Derivatives Backprop Example BCE Loss CE Loss Summary

Back-Propagation: Derivative w.r.t Hidden-Layer
Excitations

We can define excitation gradients at the hidden layer to be

~δ
(1)
i = ∇~ξ(1)

i

L

Putting together the last two steps, we have that

~δ
(1)
i =

(
W (2),T~δ

(2)
i

)
� σ̇

(
ξ

(1)
i

)
where � means Hadamard product (element-wise multiplication of
the two vectors).

Review Learning Gradient Back-Propagation Derivatives Backprop Example BCE Loss CE Loss Summary

Outline

1 Review: Neural Network

2 Learning the Parameters of a Neural Network

3 Definitions of Gradient, Partial Derivative, and Flow Graph

4 Back-Propagation

5 Computing the Weight Derivatives

6 Backprop Example: Semicircle → Parabola

7 Binary Cross Entropy Loss

8 Multinomial Classifier: Cross-Entropy Loss

9 Summary

Review Learning Gradient Back-Propagation Derivatives Backprop Example BCE Loss CE Loss Summary

Computing the Derivative

OK, let’s compute the derivative of L with respect to the W (2)

matrix. Remember that W (2) enters the neural net computation as

ξ
(2)
ki =

∑
k w

(2)
kj hji . So. . .

dL
dw

(2)
k,j

=
n∑

i=1

 dL
dξ

(2)
i ,k

 ∂ξ
(2)
i ,k

∂w
(2)
k,j

=

n∑
i=1

δ
(2)
k,i hi ,j

If we define the gradient of a matrix as a matrix of partial
derivatives, we can write:

∇W (2)L =
n∑

i=1

~δ
(2)
i
~hTi =

n∑
i=1

...
∂L
∂ξ

(2)
i,k

...

 [· · · , hi ,j , · · ·]

Review Learning Gradient Back-Propagation Derivatives Backprop Example BCE Loss CE Loss Summary

1 x1 x2 . . . xD ~x is the input vector

ξ
(1)
k = b

(1)
k +

∑D
j=1 w

(1)
kj xj

1 h1 h2
. . . hN hk = σ(ξ

(1)
k)

ξ
(2)
k = b

(2)
k +

∑N
j=1 w

(2)
kj hj

ŷ1 ŷ2
. . . ŷK ŷk = ξ

(2)
k

ŷ = f (~x ,W (1), ~b(1),W (2), ~b(2))

Back-Propagating to the First Layer

dL
dw

(1)
k,j

=
n∑

i=1

 dL
dξ

(1)
i ,k

 ∂ξ
(1)
i ,k

∂w
(1)
k,j

 =
n∑

i=1

δ
(1)
i ,k xi ,j

Review Learning Gradient Back-Propagation Derivatives Backprop Example BCE Loss CE Loss Summary

1 x1 x2 . . . xD ~x is the input vector

ξ
(1)
k = b

(1)
k +

∑D
j=1 w

(1)
kj xj

1 h1 h2
. . . hN hk = σ(ξ

(1)
k)

ξ
(2)
k = b

(2)
k +

∑N
j=1 w

(2)
kj hj

ŷ1 ŷ2
. . . ŷK ŷk = ξ

(2)
k

ŷ = f (~x ,W (1), ~b(1),W (2), ~b(2))

Back-Propagating to the First Layer

∇W (1)L =
n∑

i=1

~δ
(1)
i ~xTi

Review Learning Gradient Back-Propagation Derivatives Backprop Example BCE Loss CE Loss Summary

The Back-Propagation Algorithm

W (2) ←W (2) − η∇W (2)L, W (1) ←W (1) − η∇W (1)L

∇W (2)L =
n∑

i=1

~δ
(2)
i
~hTi , ∇W (1)L =

n∑
i=1

~δ
(1)
i ~xTi

δ
(2)
i ,k =

1

n
(ŷki − yki), δ

(1)
i ,k =

K∑
`=1

δ
(2)
i ,` w

(2)
`,k σ̇(ξ

(1)
i ,k)

~δ
(2)
i =

1

n
(ŷi − ~yi) , ~δ

(1)
i =

(
W (2),T~δ

(2)
i

)
� σ̇(~ξ

(1)
i)

. . . where � means element-wise multiplication of two vectors; σ̇(~ξ)
is the element-wise derivative of σ(~ξ).

Review Learning Gradient Back-Propagation Derivatives Backprop Example BCE Loss CE Loss Summary

Outline

1 Review: Neural Network

2 Learning the Parameters of a Neural Network

3 Definitions of Gradient, Partial Derivative, and Flow Graph

4 Back-Propagation

5 Computing the Weight Derivatives

6 Backprop Example: Semicircle → Parabola

7 Binary Cross Entropy Loss

8 Multinomial Classifier: Cross-Entropy Loss

9 Summary

Review Learning Gradient Back-Propagation Derivatives Backprop Example BCE Loss CE Loss Summary

Backprop Example: Semicircle → Parabola

Remember, we are going to try to approximate this using:

ŷ = ~b +
∑
j

~w
(2)
j σ

(
w̄

(1)
k ~x

)

Review Learning Gradient Back-Propagation Derivatives Backprop Example BCE Loss CE Loss Summary

Randomly Initialized Weights

Here’s what we get if we randomly initialize w̄
(1)
k , ~b, and ~w

(2)
j .

The red vector on the right is the estimation error for this training
token, ~δ(2) = ŷ − ~y . It’s huge!

Review Learning Gradient Back-Propagation Derivatives Backprop Example BCE Loss CE Loss Summary

Back-Prop: Layer 2

Remember

W (2) ←W (2) − η∇W (2)L = W (2) − η
n∑

i=1

~δ
(2)
i
~hTi

= W (2) − η

n

n∑
i=1

(ŷi − ~yi)~hTi

Thinking in terms of the columns of W (2), we have

~w
(2)
j ← ~w

(2)
j − η

n

n∑
i=1

(ŷi − ~yi) hji

So, in words, layer-2 backprop means

Each column, ~w
(2)
j , gets updated in the direction ~y − ŷ .

The update for the j th column, in response to the i th training
token, is scaled by its activation hji .

Review Learning Gradient Back-Propagation Derivatives Backprop Example BCE Loss CE Loss Summary

Back-Prop: Layer 1

Remember

W (1) ←W (1) − η∇W (1)L = W (1) − η
n∑

i=1

~δ
(1)
i ~xTi

= W (1) − η
n∑

i=1

(
σ̇(~ξ

(1)
i)�W (2),T~δ

(2)
i

)
~xTi

Thinking in terms of the rows of W (1), we have

w̄
(1)
k ← w̄

(1)
k − η

n∑
i=1

δ
(1)
ki ~x

T
i

In words, layer-1 backprop means

Each row, w̄
(1)
k , gets updated in the direction −~x .

The update for the kth row, in response to the i th training

token, is scaled by its back-propagated error term δ
(1)
ki .

Review Learning Gradient Back-Propagation Derivatives Backprop Example BCE Loss CE Loss Summary

Back-Prop Example: Semicircle → Parabola

For each column ~w
(2)
j and the corresponding row w̄

(1)
k ,

~w
(2)
j ← ~w

(2)
j − η

n

n∑
i=1

(ŷi − ~yi) hji , w̄
(1)
k ← w̄

(1)
k − η

n∑
i=1

δ
(1)
ki ~x

T
i

Review Learning Gradient Back-Propagation Derivatives Backprop Example BCE Loss CE Loss Summary

Outline

1 Review: Neural Network

2 Learning the Parameters of a Neural Network

3 Definitions of Gradient, Partial Derivative, and Flow Graph

4 Back-Propagation

5 Computing the Weight Derivatives

6 Backprop Example: Semicircle → Parabola

7 Binary Cross Entropy Loss

8 Multinomial Classifier: Cross-Entropy Loss

9 Summary

Review Learning Gradient Back-Propagation Derivatives Backprop Example BCE Loss CE Loss Summary

Review: MSE

Until now, we’ve assumed that the loss function is MSE:

L =
1

2n

n∑
i=1

‖~yi − ŷ(~xi)‖2

MSE makes sense if ~y and ŷ are both real-valued vectors, and
we want to compute ŷMMSE (~x) = E [~y |~x]. But what if ŷ and
~y are discrete-valued (i.e., classifiers?)

Surprise: MSE works surprisingly well, even with discrete ~y !

But a different metric, binary cross-entropy (BCE) works
slightly better.

Review Learning Gradient Back-Propagation Derivatives Backprop Example BCE Loss CE Loss Summary

MSE with a binary target vector

Suppose y is just a scalar binary classifier label, y ∈ {0, 1}
(for example: “is it a dog or a cat?”)

Suppose that the input vector, ~x , is not quite enough
information to tell us what y should be. Instead, ~x only tells
us the probability of y = 1:

y =

{
1 with probability p

Y |~X (1|~x)

0 with probability p
Y |~X (0|~x)

In the limit as n→∞, assuming that the gradient descent
finds the global optimum, the MMSE solution gives us:

ŷ(~x)→n→∞ E [y |~x]

=
(

1× p
Y |~X (1|~x)

)
+
(

0× p
Y |~X (0|~x)

)
= p

Y |~X (1|~x)

Review Learning Gradient Back-Propagation Derivatives Backprop Example BCE Loss CE Loss Summary

Pros and Cons of MMSE for Binary Classifiers

Pro: In the limit as n→∞, the global optimum is
ŷ(~x)→ p

Y |~X (1|~x).

Con: The sigmoid nonlinearity is hard to train using MMSE.
Remember the vanishing gradient problem: σ′(wx)→ 0 as
w →∞, so after a few epochs of training, the neural net just
stops learning.

Solution: Can we devise a different loss function (not MMSE)
that will give us the same solution (ŷ(~x)→ p

Y |~X (1|~x)), but

without suffering from the vanishing gradient problem?

Review Learning Gradient Back-Propagation Derivatives Backprop Example BCE Loss CE Loss Summary

Binary Cross Entropy

Suppose we treat the neural net output as a noisy estimator,
p̂
Y |~X (y |~x), of the unknown true pmf p

Y |~X (y |~x):

ŷi = p̂
Y |~X (1|~x),

so that

p̂
Y |~X (yi |~xi) =

{
ŷi yi = 1

1− ŷi yi = 0

The binary cross-entropy loss is the negative log probability of the
training data, assuming i.i.d. training examples:

LBCE = −1

n

n∑
i=1

ln p̂
Y |~X (yi |~xi)

= −1

n

n∑
i=1

yi (ln ŷi) + (1− yi) (ln(1− ŷi))

Review Learning Gradient Back-Propagation Derivatives Backprop Example BCE Loss CE Loss Summary

The Derivative of BCE

BCE is useful because it has the same solution as MSE, without
allowing the sigmoid to suffer from vanishing gradients. Suppose
ŷi = σ(whi).

∇wL = −1

n

∑
i :yi=1

∇w lnσ(whi) +
∑
i :yi=0

∇w ln(1− σ(whi))

= −1

n

∑
i :yi=1

∇wσ(whi)

σ(whi)
+
∑
i :yi=0

∇w (1− σ(whi))

1− σ(whi)

= −1

n

∑
i :yi=1

ŷi (1− ŷi)hi
ŷi

+
∑
i :yi=0

−ŷi (1− ŷi)hi
1− ŷi

= −1

n

n∑
i=1

(yi − ŷi) hi

Review Learning Gradient Back-Propagation Derivatives Backprop Example BCE Loss CE Loss Summary

Why Cross-Entropy is Useful for Machine Learning

Binary cross-entropy is useful for machine learning because:

1 Just like MSE, it estimates the true class probability: in

the limit as n→∞, ∇WL → E
[
(Y − Ŷ)H

]
, which is zero

only if

Ŷ = E
[
Y |~X

]
= p

Y |~X (1|~x)

2 Unlike MSE, it does not suffer from the vanishing
gradient problem of the sigmoid.

Review Learning Gradient Back-Propagation Derivatives Backprop Example BCE Loss CE Loss Summary

Unlike MSE, BCE does not suffer from the vanishing
gradient problem of the sigmoid.

The vanishing gradient problem was caused by σ′ = σ(1− σ),
which goes to zero when its input is either plus or minus infinity.

If yi = 1, then differentiating lnσ cancels the σ term in the
numerator, leaving only the (1− σ) term, which is large if and
only if the neural net is wrong.

If yi = 0, then differentiating ln(1− σ) cancels the (1− σ)
term in the numerator, leaving only the σ term, which is large
if and only if the neural net is wrong.

So binary cross-entropy ignores training tokens only if the neural
net guesses them right. If it guesses wrong, then back-propagation
happens.

Review Learning Gradient Back-Propagation Derivatives Backprop Example BCE Loss CE Loss Summary

Outline

1 Review: Neural Network

2 Learning the Parameters of a Neural Network

3 Definitions of Gradient, Partial Derivative, and Flow Graph

4 Back-Propagation

5 Computing the Weight Derivatives

6 Backprop Example: Semicircle → Parabola

7 Binary Cross Entropy Loss

8 Multinomial Classifier: Cross-Entropy Loss

9 Summary

Review Learning Gradient Back-Propagation Derivatives Backprop Example BCE Loss CE Loss Summary

Multinomial Classifier

Suppose, instead of just a 2-class classifier, we want the neural
network to classify ~x as being one of K different classes. There are
many ways to encode this, but one of the best is

~y =

y1

y2
...
yK

 , yk =

{
1 k = k∗ (k is the correct class)

0 otherwise

A vector ~y like this is called a “one-hot vector,” because it is a
binary vector in which only one of the elements is nonzero (“hot”).
This is useful because minimizing the MSE loss gives:

ŷ =

ŷ1

ŷ2
...
ŷK

 =

p̂
Y1|~X (1|~x)

p̂
Y2|~X (1|~x)

...
p̂
YK |~X

(1|~x)

 ,
where the global optimum of p̂

Yk |~X
(y |~x)→ p

Yk |~X
(y |~x) as n→∞.

Review Learning Gradient Back-Propagation Derivatives Backprop Example BCE Loss CE Loss Summary

One-hot vectors and Cross-entropy loss

The cross-entropy loss, for a training database coded with one-hot
vectors, is

LCE = −1

n

n∑
i=1

K∑
k=1

yki ln ŷki

This is useful because:

1 Like MSE, Cross-Entropy has an asymptotic global
optimum at: ŷk → p

Yk |~X
(1|~x).

2 Unlike MSE, Cross-Entropy with a softmax nonlinearity
suffers no vanishing gradient problem.

Review Learning Gradient Back-Propagation Derivatives Backprop Example BCE Loss CE Loss Summary

Softmax Nonlinearity

The multinomial cross-entropy loss is only well-defined if
0 < ŷki < 1, and it is only well-interpretable if

∑
k ŷki = 1. We can

guarantee these two properties by setting

ŷk = softmax
k

(
W~h

)
=

exp(w̄k
~h)∑K

`=1 exp(w̄`~h)
,

where w̄k is the kth row of the W matrix.

Review Learning Gradient Back-Propagation Derivatives Backprop Example BCE Loss CE Loss Summary

Sigmoid is a special case of Softmax!

softmax
k

(
W~h

)
=

exp(w̄k
~h)∑K

`=1 exp(w̄`~h)
.

Notice that, in the 2-class case, the softmax is just exactly a
logistic sigmoid function:

softmax
1

(W~h) =
ew̄1

~h

ew̄1
~h + ew̄2

~h
=

1

1 + e−(w̄1−w̄2)~h
= σ

(
(w̄1 − w̄2)~h

)
so everything that you’ve already learned about the sigmoid applies
equally well here.

Review Learning Gradient Back-Propagation Derivatives Backprop Example BCE Loss CE Loss Summary

Outline

1 Review: Neural Network

2 Learning the Parameters of a Neural Network

3 Definitions of Gradient, Partial Derivative, and Flow Graph

4 Back-Propagation

5 Computing the Weight Derivatives

6 Backprop Example: Semicircle → Parabola

7 Binary Cross Entropy Loss

8 Multinomial Classifier: Cross-Entropy Loss

9 Summary

Review Learning Gradient Back-Propagation Derivatives Backprop Example BCE Loss CE Loss Summary

Error Metrics Summarized

Training is done using gradient descent.

“Back-propagation” is the process of using the chain rule of
differentiation in order to find the derivative of the loss with
respect to each of the learnable weights and biases of the
network.

For a regression problem, use MSE to achieve ŷ → E [~y |~x].

For a binary classifier with a sigmoid output, BCE loss gives
you the MSE result without the vanishing gradient problem.

For a multi-class classifier with a softmax output, CE loss
gives you the MSE result without the vanishing gradient
problem.

	Review: Neural Network
	Learning the Parameters of a Neural Network
	Definitions of Gradient, Partial Derivative, and Flow Graph
	Back-Propagation
	Computing the Weight Derivatives
	Backprop Example: Semicircle Parabola
	Binary Cross Entropy Loss
	Multinomial Classifier: Cross-Entropy Loss
	Summary

