
Intro Example #1 Binary Nonlinearities Example #2 Classifiers Summary

Lecture 17: Neural Nets

Mark Hasegawa-Johnson

ECE 417: Multimedia Signal Processing, Fall 2021



Intro Example #1 Binary Nonlinearities Example #2 Classifiers Summary

1 Intro

2 Example #1: Neural Net as Universal Approximator

3 Binary Nonlinearities

4 Example #2: Semicircle → Parabola

5 Classifiers

6 Summary



Intro Example #1 Binary Nonlinearities Example #2 Classifiers Summary

Outline

1 Intro

2 Example #1: Neural Net as Universal Approximator

3 Binary Nonlinearities

4 Example #2: Semicircle → Parabola

5 Classifiers

6 Summary



Intro Example #1 Binary Nonlinearities Example #2 Classifiers Summary

What is a Neural Network?

Computation in biological neural networks is performed by
trillions of simple cells (neurons), each of which performs one
very simple computation.

Biological neural networks learn by strengthening the
connections between some pairs of neurons, and weakening
other connections.



Intro Example #1 Binary Nonlinearities Example #2 Classifiers Summary

What is an Artificial Neural Network?

Computation in an artificial neural network is performed by
thousands of simple cells (nodes), each of which performs one
very simple computation.

Artificial neural networks learn by strengthening the
connections between some pairs of nodes, and weakening
other connections.



Intro Example #1 Binary Nonlinearities Example #2 Classifiers Summary

Two-Layer Feedforward Neural Network

1 x1 x2 . . . xD ~x is the input vector

e
(1)
k = b

(1)
k +

∑D
j=1 w

(1)
kj xj

1 h1 h2
. . . hN hk = σ(e

(1)
k )

e
(2)
k = b

(2)
k +

∑N
j=1 w

(2)
kj hj

ŷ1 ŷ2
. . . ŷK ŷk = e

(2)
k

ŷ = h(~x ,W (1), ~b(1),W (2), ~b(2))



Intro Example #1 Binary Nonlinearities Example #2 Classifiers Summary

Neural Network = Universal Approximator

Assume. . .

Linear Output Nodes: ŷk = e
(2)
k

Smoothly Nonlinear Hidden Nodes: dσ
de finite

Smooth Target Function: ŷ = h(~x ,W , b) approximates
~y = h∗(~x) ∈ H, where H is some class of sufficiently smooth
functions of ~x (functions whose Fourier transform has a first
moment less than some finite number C )

There are N hidden nodes, ŷk , 1 ≤ k ≤ N

The input vectors are distributed with some probability density
function, p(~x), over which we can compute expected values.

Then (Barron, 1993) showed that. . .

max
h∗(~x)∈H

min
W ,b

E
[
h(~x ,W , b)− h∗(~x)|2

]
≤ O

{
1

N

}



Intro Example #1 Binary Nonlinearities Example #2 Classifiers Summary

Outline

1 Intro

2 Example #1: Neural Net as Universal Approximator

3 Binary Nonlinearities

4 Example #2: Semicircle → Parabola

5 Classifiers

6 Summary



Intro Example #1 Binary Nonlinearities Example #2 Classifiers Summary

Target: Can we get the neural net to compute this
function?

Suppose our goal is to find some weights and biases, W (1), ~b(1),
W (2), and ~b(2) so that ŷ(~x) is the nonlinear function shown here:



Intro Example #1 Binary Nonlinearities Example #2 Classifiers Summary

Excitation, First Layer: e
(1)
k = b

(1)
k +

∑2
j=1 w

(1)
kj xj

The first layer of the neural net just computes a linear function of
~x . Here’s an example:



Intro Example #1 Binary Nonlinearities Example #2 Classifiers Summary

Activation, First Layer: hk = tanh(e
(1)
k )

The activation nonlinearity then “squashes” the linear function:



Intro Example #1 Binary Nonlinearities Example #2 Classifiers Summary

Second Layer: ŷk = b
(2)
k +

∑2
j=1 w

(2)
kj hk

The second layer then computes a linear combination of the
first-layer activations, which is sufficient to match our desired
function:



Intro Example #1 Binary Nonlinearities Example #2 Classifiers Summary

Outline

1 Intro

2 Example #1: Neural Net as Universal Approximator

3 Binary Nonlinearities

4 Example #2: Semicircle → Parabola

5 Classifiers

6 Summary



Intro Example #1 Binary Nonlinearities Example #2 Classifiers Summary

The Basic Binary
Nonlinearity: Unit Step
(a.k.a. Heaviside function)

u
(
w̄

(1)
k ~x

)
=

{
1 w̄

(1)
k ~x > 0

0 w̄
(1)
k ~x < 0

Pros and Cons of the Unit Step

Pro: it gives exactly piece-wise
constant approximation of any
desired ~y .

Con: if hk = u(ek), then you can’t
use back-propagation to train the
neural network.

Remember back-prop:

dL
dwkj

=
∑
k

(
dL
dhk

)(
∂hk
∂ek

)(
∂ek
∂wkj

)
but du(x)/dx is a Dirac delta function —
zero everywhere, except where it’s
infinite.



Intro Example #1 Binary Nonlinearities Example #2 Classifiers Summary

The Differentiable Approximation:
Logistic Sigmoid

σ(b) =
1

1 + e−b

Why to use the logistic function

σ(b) =


1 b →∞
0 b → −∞
in between in between

and σ(b) is smoothly differentiable,
so back-prop works.



Intro Example #1 Binary Nonlinearities Example #2 Classifiers Summary

Derivative of a sigmoid

The derivative of a sigmoid is pretty easy to calculate:

σ(x) =
1

1 + e−x
,

dσ

dx
=

e−x

(1 + e−x)2

An interesting fact that’s extremely useful, in computing
back-prop, is that if h = σ(x), then we can write the derivative in
terms of h, without any need to store x :

dσ

dx
=

e−x

(1 + e−x)2

=

(
1

1 + e−x

)(
e−x

1 + e−x

)
=

(
1

1 + e−x

)(
1− 1

1 + e−x

)
= σ(x)(1− σ(x))

= h(1− h)



Intro Example #1 Binary Nonlinearities Example #2 Classifiers Summary

Step function and its derivative

The derivative of the step
function is the Dirac delta,
which is not very useful in
backprop.

Logistic function and its derivative



Intro Example #1 Binary Nonlinearities Example #2 Classifiers Summary

Signum and Tanh

The signum function is a signed binary nonlinearity. It is used if,
for some reason, you want your output to be h ∈ {−1, 1}, instead
of h ∈ {0, 1}:

sign(b) =

{
−1 b < 0

1 b > 0

It is usually approximated by the hyperbolic tangent function
(tanh), which is just a scaled shifted version of the sigmoid:

tanh(b) =
eb − e−b

eb + e−b
=

1− e−2b

1 + e−2b
= 2σ(2b)− 1

and which has a scaled version of the sigmoid derivative:

d tanh(b)

db
=
(
1− tanh2(b)

)



Intro Example #1 Binary Nonlinearities Example #2 Classifiers Summary

Signum function and its derivative

The derivative of the signum
function is the Dirac delta,
which is not very useful in
backprop.

Tanh function and its derivative



Intro Example #1 Binary Nonlinearities Example #2 Classifiers Summary

A suprising problem with the sigmoid: Vanishing gradients

The sigmoid has a surprising problem: for large values of w ,
σ′(wx)→ 0.

When we begin training, we start with small values of w .
σ′(wx) is reasonably large, and training proceeds.

If w and ∇wL are vectors in opposite directions, then
w ← w − η∇wL makes w larger. After a few iterations, w
gets very large. At that point, σ′(wx)→ 0, and training
effectively stops.

After that point, even if the neural net sees new training data
that don’t match what it has already learned, it can no longer
change. We say that it has suffered from the “vanishing
gradient problem.”



Intro Example #1 Binary Nonlinearities Example #2 Classifiers Summary

A solution to the vanishing gradient problem: ReLU

The most ubiquitous solution to the vanishing gradient problem is
to use a ReLU (rectified linear unit) instead of a sigmoid. The
ReLU is given by

ReLU(b) =

{
b b ≥ 0

0 b ≤ 0,

and its derivative is the unit step. Notice that the unit step is
equally large (u(wx) = 1) for any positive value (wx > 0), so no
matter how large w gets, back-propagation continues to work.



Intro Example #1 Binary Nonlinearities Example #2 Classifiers Summary

A solution to the vanishing gradient problem: ReLU

Pro: The ReLU derivative is equally large (dReLU(wx)
d(wx) = 1)

for any positive value (wx > 0), so no matter how large w
gets, back-propagation continues to work.

Con: If the ReLU is used as a hidden unit (hj = ReLU(ej)),
then your output is no longer a piece-wise constant
approximation of ~y . It is now piece-wise linear.

On the other hand, maybe piece-wise linear is better than
piece-wise constant, so. . .



Intro Example #1 Binary Nonlinearities Example #2 Classifiers Summary

A solution to the vanishing gradient problem: the ReLU

Pro: The ReLU derivative is equally large (dReLU(wx)
d(wx) = 1)

for any positive value (wx > 0), so no matter how large w
gets, back-propagation continues to work.

Pro: If the ReLU is used as a hidden unit (hj = ReLU(ej)),
then your output is no longer a piece-wise constant
approximation of ~y . It is now piece-wise linear.

Con: ??



Intro Example #1 Binary Nonlinearities Example #2 Classifiers Summary

The dying ReLU problem

Pro: The ReLU derivative is equally large (dReLU(wx)
d(wx) = 1)

for any positive value (wx > 0), so no matter how large w
gets, back-propagation continues to work.

Pro: If the ReLU is used as a hidden unit (hj = ReLU(ej)),
then your output is no longer a piece-wise constant
approximation of ~y . It is now piece-wise linear.

Con: If wx + b < 0, then (dReLU(wx)
d(wx) = 0), and learning

stops. In the worst case, if b becomes very negative, then all
of the hidden nodes are turned off—the network computes
nothing, and no learning can take place! This is called the
“Dying ReLU problem.”



Intro Example #1 Binary Nonlinearities Example #2 Classifiers Summary

Solutions to the Dying ReLU problem

Softplus: Pro: always positive. Con: gradient→ 0 as
x → −∞.

f (x) = ln (1 + ex)

Leaky ReLU: Pro: gradient constant, output piece-wise
linear. Con: negative part might fail to match your dataset.

f (x) =

{
x x ≥ 0

0.01x x ≤ 0

Parametric ReLU (PReLU:) Pro: gradient constant, ouput
PWL. The slope of the negative part (a) is a trainable
parameter, so can adapt to your dataset. Con: you have to
train it.

f (x) =

{
x x ≥ 0

ax x ≤ 0



Intro Example #1 Binary Nonlinearities Example #2 Classifiers Summary

Outline

1 Intro

2 Example #1: Neural Net as Universal Approximator

3 Binary Nonlinearities

4 Example #2: Semicircle → Parabola

5 Classifiers

6 Summary



Intro Example #1 Binary Nonlinearities Example #2 Classifiers Summary

Example #2: Semicircle → Parabola

Can we design a neural net that converts a semicircle
(x2

0 + x2
1 = 1) to a parabola (y1 = y2

0 )?



Intro Example #1 Binary Nonlinearities Example #2 Classifiers Summary

Two-Layer Feedforward Neural Network

1 x1 x2 . . . xD ~x is the input vector

e
(1)
k = b

(1)
k +

∑D
j=1 w

(1)
kj xj

1 h1 h2
. . . hN hk = σ(e

(1)
k )

e
(2)
k = b

(2)
k +

∑N
j=1 w

(2)
kj hj

ŷ1 ŷ2
. . . ŷK ŷk = e

(2)
k

ŷ = h(~x ,W (1), ~b(1),W (2), ~b(2))



Intro Example #1 Binary Nonlinearities Example #2 Classifiers Summary

Example #2: Semicircle → Parabola

Let’s define some vector notation:

Second Layer: Define ~w
(2)
j =

[
w

(2)
0j

w
(2)
1j

]
, the j th column of

the W (2) matrix, so that

ŷ = ~b +
∑
j

~w
(2)
j hj means ŷk = bk +

∑
j

w
(2)
kj hj∀k.

First Layer Activation Function:

hk = σ
(
e

(1)
k

)
First Layer Excitation: Define w̄

(1)
k = [w

(1)
k0 ,w

(1)
k1 ], the kth

row of the W (1) matrix, so that

e
(1)
k = w̄

(1)
k ~x means e

(1)
k =

∑
j

w
(1)
kj xj∀k .



Intro Example #1 Binary Nonlinearities Example #2 Classifiers Summary

Second Layer = Piece-Wise Approximation

The second layer of the network approximates ŷ using a bias term
~b, plus correction vectors ~w

(2)
j , each scaled by its activation hj :

ŷ = ~b(2) +
∑
j

~w
(2)
j hj

The activation, hj , is a number between 0 and 1. For example, we
could use the logistic sigmoid function:

hk = σ
(
e

(1)
k

)
=

1

1 + exp(−e(1)
k )
∈ (0, 1)

The logistic sigmoid is a differentiable approximation to a unit step
function.



Intro Example #1 Binary Nonlinearities Example #2 Classifiers Summary

Step and Logistic nonlinearities Signum and Tanh nonlinearities



Intro Example #1 Binary Nonlinearities Example #2 Classifiers Summary

First Layer = A Series of Decisions

The first layer of the network decides whether or not to “turn on”
each of the hj ’s. It does this by comparing ~x to a series of linear
threshold vectors:

hk = σ
(
w̄

(1)
k ~x

)
≈

{
1 w̄

(1)
k ~x > 0

0 w̄
(1)
k ~x < 0



Intro Example #1 Binary Nonlinearities Example #2 Classifiers Summary

Example #2: Semicircle → Parabola



Intro Example #1 Binary Nonlinearities Example #2 Classifiers Summary

Example #2: Semicircle → Parabola



Intro Example #1 Binary Nonlinearities Example #2 Classifiers Summary

Example #2: Semicircle → Parabola



Intro Example #1 Binary Nonlinearities Example #2 Classifiers Summary

Example #2: Semicircle → Parabola



Intro Example #1 Binary Nonlinearities Example #2 Classifiers Summary

Example #2: Semicircle → Parabola



Intro Example #1 Binary Nonlinearities Example #2 Classifiers Summary

Example #2: Semicircle → Parabola



Intro Example #1 Binary Nonlinearities Example #2 Classifiers Summary

Example #2: Semicircle → Parabola



Intro Example #1 Binary Nonlinearities Example #2 Classifiers Summary

Example #2: Semicircle → Parabola



Intro Example #1 Binary Nonlinearities Example #2 Classifiers Summary

Outline

1 Intro

2 Example #1: Neural Net as Universal Approximator

3 Binary Nonlinearities

4 Example #2: Semicircle → Parabola

5 Classifiers

6 Summary



Intro Example #1 Binary Nonlinearities Example #2 Classifiers Summary

A classifier target funtion

A “classifier” is a neural network with discrete ouputs. For
example, suppose you need to color a 2D picture. The goal is to
output ŷ(~x) = 1 if ~x should be red, and ŷ = −1 if ~x should be
blue:



Intro Example #1 Binary Nonlinearities Example #2 Classifiers Summary

A classifier neural network

We can discretize the output by simply using an output

nonlinearity, e.g., ŷk = g(e
(2)
k ), for some nonlinearity g(x):

1 x1 x2 . . . xD ~x is the input vector

e
(1)
k = b

(1)
k +

∑D
j=1 w

(1)
kj xj

1 h1 h2
. . . hN hk = σ(e

(1)
k )

e
(2)
k = b

(2)
k +

∑N
j=1 w

(2)
kj hj

ŷ1 ŷ2
. . . ŷK ŷk = g(e

(2)
k )

ŷ = h(~x ,W (1), ~b(1),W (2), ~b(2))



Intro Example #1 Binary Nonlinearities Example #2 Classifiers Summary

Nonlinearities for classifier neural networks

During testing: the output is passed through a hard
nonlinearity, e.g., a unit step or a signum.

During training: the output is passed through the
corresponding soft nonlinearity, e.g., sigmoid or tanh.



Intro Example #1 Binary Nonlinearities Example #2 Classifiers Summary

Excitation, First Layer: e
(1)
k = b

(1)
k +

∑2
j=1 w

(1)
kj xj



Intro Example #1 Binary Nonlinearities Example #2 Classifiers Summary

Activation, First Layer: hk = tanh(e
(1)
k )

Here, I’m using tanh as the nonlinearity for the hidden layer. But it
often works better if we use ReLU or PReLU.



Intro Example #1 Binary Nonlinearities Example #2 Classifiers Summary

Excitation, Second Layer: e
(2)
k = b

(2)
k +

∑2
j=1 w

(2)
kj hj



Intro Example #1 Binary Nonlinearities Example #2 Classifiers Summary

Activation, Second Layer: ŷk = sign(e
(2)
k )

During training, the output layer uses a soft nonlinearity. During
testing, though, the soft nonlinearity is replaced with a hard
nonlinearity, e.g., signum:



Intro Example #1 Binary Nonlinearities Example #2 Classifiers Summary

Outline

1 Intro

2 Example #1: Neural Net as Universal Approximator

3 Binary Nonlinearities

4 Example #2: Semicircle → Parabola

5 Classifiers

6 Summary



Intro Example #1 Binary Nonlinearities Example #2 Classifiers Summary

Summary

A neural network approximates an arbitrary function using a
sort of piece-wise approximation.

The activation of each piece is determined by a nonlinear
activation function applied to the hidden layer.



Intro Example #1 Binary Nonlinearities Example #2 Classifiers Summary

Nonlinearities Summarized

Unit-step and signum nonlinearities, on the hidden layer,
cause the neural net to compute a piece-wise constant
approximation of the target function. Unfortunately, they’re
not differentiable, so they’re not trainable.

Sigmoid and tanh are differentiable approximations of
unit-step and signum, respectively. Unfortunately, they suffer
from a vanishing gradient problem: as the weight matrix gets
larger, the derivatives of sigmoid and tanh go to zero, so error
doesn’t get back-propagated through the nonlinearity any
more.

ReLU has the nice property that the output is a
piece-wise-linear approximation of the target function, instead
of piece-wise constant. It also has no vanishing gradient
problem. Instead, it has the dying-ReLU problem.

Softplus, Leaky ReLU, and PReLU are different solutions to
the dying-ReLU problem.


	Intro
	Example #1: Neural Net as Universal Approximator
	Binary Nonlinearities
	Example #2: Semicircle  Parabola
	Classifiers
	Summary

