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The Three Problems for an HMM
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1 Recognition: Given two different HMMs, Λ1 and Λ2, and an
observation sequence X . Which HMM was more likely to have
produced X? In other words, p(X |Λ1) > p(X |Λ2)?

2 Segmentation: What is p(Q|X ,Λ)?

3 Training: Given an initial HMM Λ, and an observation
sequence X , can we find Λ′ such that p(X |Λ′) > p(X |Λ)?



Review Issues Observations Scaling Denominators Regularization Summary

Recognition: The Forward Algorithm

Definition: αt(i) ≡ p(~x1, . . . , ~xt , qt = i |Λ). Computation:

1 Initialize:
α1(i) = πibi (~x1), 1 ≤ i ≤ N

2 Iterate:

αt(j) =
N∑
i=1

αt−1(i)aijbj(~xt), 1 ≤ j ≤ N, 2 ≤ t ≤ T

3 Terminate:

p(X |Λ) =
N∑
i=1

αT (i)
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Segmentation: The Backward Algorithm

Definition: βt(i) ≡ p(~xt+1, . . . , ~xT |qt = i ,Λ). Computation:

1 Initialize:
βT (i) = 1, 1 ≤ i ≤ N

2 Iterate:

βt(i) =
N∑
j=1

aijbj(~xt+1)βt+1(j), 1 ≤ i ≤ N, 1 ≤ t ≤ T − 1

3 Terminate:

p(X |Λ) =
N∑
i=1

πibi (~x1)β1(i)
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Segmentation: State and Segment Posteriors

1 The State Posterior:

γt(i) = p(qt = i |X ,Λ) =
αt(i)βt(i)∑N

k=1 αt(k)βt(k)

2 The Segment Posterior:

ξt(i , j) = p(qt = i , qt+1 = j |X ,Λ)

=
αt(i)aijbj(~xt+1)βt+1(j)∑N

k=1

∑N
`=1 αt(k)ak`b`(~xt+1)βt+1(`)
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Training: The Baum-Welch Algorithm

1 Transition Probabilities:

a′ij =

∑T−1
t=1 ξt(i , j)∑N

j=1

∑T−1
t=1 ξt(i , j)

2 Gaussian Observation PDFs:

~µ′i =

∑T
t=1 γt(i)~xt∑T
t=1 γt(i)

Σ′i =

∑T
t=1 γt(i)(~xt − ~µi )(~xt − ~µi )T∑T

t=1 γt(i)
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Numerical Issues in the Training of an HMM

Flooring the observation pdf: e−
1
2

(~x−~µ)T Σ−1(~x−~µ) can be
very small.

Scaled forward-backward algorithm: aTij can be very small.

Zero denominators: Sometimes
∑

i αt(i)βt(i) is zero.

Tikhonov regularization: Re-estimation formulae can result
in |Σi | = 0.
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Flooring the observation pdf: Why is it necessary?

Suppose that bj(~x) is Gaussian:

bj(~x) =
1∏D

d=1

√
2πσ2

jd

e
− 1

2

∑D
d=1

(xd−µjd )2

σ2
jd

Suppose that D ≈ 30. Then:
Average distance from the mean Observation pdf

xd−µjd
σjd

1
(2π)15 e

− 1
2

∏D
d=1

(
xd−µjd
σjd

)2

1 1
(2π)15 e

−15 ≈ 10−19

3 1
(2π)15 e

−135 ≈ 10−71

5 1
(2π)15 e

−375 ≈ 10−175

7 1
(2π)15 e

−735 ≈ 10−331
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Why is that a problem?

IEEE single-precision floating point: smallest number is 10−38.

IEEE double-precision floating point (numpy): smallest
number is 10−324.
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Why is that a problem?

αt(j) =
N∑
i=1

αt−1(i)aijbj(~xt), 1 ≤ j ≤ N, 2 ≤ t ≤ T

If some (but not all) aij = 0, and some (but not all)
bj(~x) = 0, then it’s possible that all aijbj(~x) = 0.

In that case, it’s possible to get αt(j) = 0 for all j .

In that case, recognition crashes.
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One possible solution: Floor the observation pdf

There are many possible solutions, including scaling solutions
similar to the scaled forward that I’m about to introduce. But for
the MP, I recommend a simple solution: floor the observation pdf.
Thus:

bj(~x) = max (floor,N (~x |~µj ,Σj))

The floor needs to be much larger than 10−324, but much smaller
than “good” values of the Gaussian (values observed for
non-outlier spectra). In practice, a good choice seems to be

floor = 10−100
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Result example

Here is ln bi (~xt), plotted as a function of i and t, for the words
“one,” “two,” and “three.”
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The Forward Algorithm

Definition: αt(i) ≡ p(~x1, . . . , ~xt , qt = i |Λ). Computation:

1 Initialize:
α1(i) = πibi (~x1), 1 ≤ i ≤ N

2 Iterate:

αt(j) =
N∑
i=1

αt−1(i)aijbj(~xt), 1 ≤ j ≤ N, 2 ≤ t ≤ T

3 Terminate:

p(X |Λ) =
N∑
i=1

αT (i)
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Numerical Issues

The forward algorithm is susceptible to massive floating-point
underflow problems. Consider this equation:

αt(j) =
N∑
i=1

αt−1(i)aijbj(~xt)

=
N∑

q1=1

· · ·
N∑

qt−1=1

πq1bq1(~x1) · · · aqt−1qtbqt (~xt)

First, suppose that bq(x) is discrete, with k ∈ {1, . . . ,K}.
Suppose K ≈ 1000 and T ≈ 100, in that case, each αt(j) is:

The sum of NT different terms, each of which is

the product of T factors, each of which is

the product of two probabilities: aij ∼ 1
N times bj(x) ∼ 1

K , so

αT (j) ≈ NT

(
1

NK

)T

≈ 1

KT
≈ 10−300
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The Solution: Scaling

The solution is to just re-scale αt(j) at each time step, so it never
gets really small:

α̂t(j) =

∑N
i=1 α̂t−1(i)aijbj(~xt)∑N

`=1

∑N
i=1 α̂t−1(i)ai`b`(~xt)

Now the problem is. . . if αt(j) has been re-scaled, how do we
perform recognition? Remember we used to have
p(X |Λ) =

∑
i αt(i). How can we get p(X |Λ) now?
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What exactly is alpha-hat?

Let’s look at this in more detail. αt(j) is defined to be
p(~x1, . . . , ~xt , qt = j |Λ). Let’s define a “scaling term,” gt , equal to
the denominator in the scaled forward algorithm. So, for example,
at time t = 1 we have:

g1 =
N∑
`=1

α1(`) =
N∑
`=1

p(~x1, q1 = `|Λ) = p(~x1|Λ)

and therefore

α̂1(i) =
α1(i)

g1
=

p(~x1, q1 = i |Λ)

p(~x1|Λ)
= p(q1 = i |~x1,Λ)
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What exactly is alpha-hat?

At time t, we need a new intermediate variable. Let’s call it α̃t(j):

α̃t(j) =
N∑
i=1

α̂t−1(i)aijbj(~xt)

=
N∑
i=1

p(qt−1 = i |~x1, . . . , ~xt−1,Λ)p(qt = j |qt−1 = i)p(~xt |qt = j)

= p(qt = j , ~xt |~x1, . . . , ~xt−1,Λ)

gt =
N∑
`=1

α̃t(`) = p(~xt |~x1, . . . , ~xt−1,Λ)

α̂t(j) =
α̃t(j)

gt
=

p(~xt , qt = j |~x1, . . . , ~xt−1,Λ)

p(~xt |~x1, . . . , ~xt−1,Λ)
= p(qt = j |~x1, . . . , ~xt ,Λ)
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Scaled Forward Algorithm: The Variables

So we have not just one, but three new variables:

1 The intermediate forward probability:

α̃t(j) = p(qt = j , ~xt |~x1, . . . , ~xt−1,Λ)

2 The scaling factor:

gt = p(~xt |~x1, . . . , ~xt−1,Λ)

3 The scaled forward probability:

α̂t(j) = p(qt = j |~x1, . . . , ~xt ,Λ)
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The Solution

The second of those variables is interesting because we want
p(X |Λ), which we can now get from the gts—we no longer
actually need the αs for this!

p(X |Λ) = p(~x1|Λ)p(~x2|~x1,Λ)p(~x3|~x1, ~x2,Λ) · · · =
T∏
t=1

gt

But that’s still not useful, because if each gt ∼ 10−19, then
multiplying them all together will result in floating point underflow.
So instead, it is better to compute

ln p(X |Λ) =
T∑
t=1

ln gt
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The Scaled Forward Algorithm

1 Initialize:

α̂1(i) =
1

g1
πibi (~x1)

2 Iterate:

α̃t(j) =
N∑
i=1

α̂t−1(i)aijbj(~xt)

gt =
N∑
j=1

α̃t(j)

α̂t(j) =
1

gt
α̃t(j)

3 Terminate:

ln p(X |Λ) =
T∑
t=1

ln gt
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Result example

Here are α̂t(i) and ln gt , plotted as a function of i and t, for the
words “one,” “two,” and “three.”
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The Scaled Backward Algorithm

This can also be done for the backward algorithm:

1 Initialize:
β̂T (i) = 1, 1 ≤ i ≤ N

2 Iterate:

β̃t(i) =
N∑
j=1

aijbj(~xt+1)β̂t+1(j)

β̂t(i) =
1

ct
β̃t(i)

Rabiner uses ct = gt , but I recommend instead that you use

ct = max
i
β̃t(i)
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Result example

Here is β̂t(i), plotted as a function of i and t, for the words “one,”
“two,” and “three.”
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Scaled Baum-Welch Re-estimation

So now we have:

α̂t(i) =
1

gt
α̃t(i) =

1∏t
τ=1 gτ

αt(i)

β̂t(i) =
1

ct
β̃t(i) =

1∏T
τ=t gτ

βt(i)

During re-estimation, we need to find γt(i) and ξt(i , j). How can
we do that?

γt(i) =
αt(i)βt(i)∑N

k=1 αt(k)βt(k)

=
α̂t(i)β̂t(i)

∏t
τ=1 gτ

∏T
τ=t cτ∑N

k=1 α̂t(k)β̂t(k)
∏t
τ=1 gτ

∏T
τ=t cτ

=
α̂t(i)β̂t(i)∑N

k=1 α̂t(k)β̂t(k)
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State and Segment Posteriors, using the Scaled
Forward-Backward Algorithm

So, because both gt and ct are independent of the state number i ,
we can just use α̂ and β̂ in place of α and β:

1 The State Posterior:

γt(i) = p(qt = i |X ,Λ) =
α̂t(i)β̂t(i)∑N

k=1 α̂t(k)β̂t(k)

2 The Segment Posterior:

ξt(i , j) = p(qt = i , qt+1 = j |X ,Λ)

=
α̂t(i)aijbj(~xt+1)β̂t+1(j)∑N

k=1

∑N
`=1 α̂t(k)ak`b`(~xt+1)β̂t+1(`)
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Zero-valued denominators

γt(i) = p(qt = i |X ,Λ) =
α̂t(i)β̂t(i)∑N

k=1 α̂t(k)β̂t(k)

The scaled forward-backward algorithm guarantees that
α̂t(i) > 0 for at least one i , and β̂t(i) > 0 for at least one i .

But scaled F-B doesn’t guarantee that it’s the same i ! It is
possible that α̂t(i)β̂t(i) = 0 for all i .

Therefore it’s still possible to get in a situation with∑N
k=1 α̂t(k)β̂t(k) = 0.
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The solution: just leave it alone

Remember what γt(i) is actually used for:

~µ′i =

∑T
t=1 γt(i)~xt∑T
t=1 γt(i)

If
∑N

k=1 α̂t(k)β̂t(k) = 0, that means that the frame ~xt is
highly unlikely to have been produced by any state (it’s an
outlier: some sort of weird background noise or audio glitch).

So the solution: just set γt(i) = 0 for that frame, for all
states.
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Posteriors, with compensation for zero denominators

1 The State Posterior:

γt(i) =


α̂t(i)β̂t(i)∑N

k=1 α̂t(k)β̂t(k)

∑N
k=1 α̂t(k)β̂t(k) > 0

0 otherwise

2 The Segment Posterior:

ξt(i , j) =


α̂t(i)aijbj (~xt+1)β̂t+1(j)∑N

k=1

∑N
`=1 α̂t(k)ak`b`(~xt+1)β̂t+1(`)

denom > 0

0 otherwise
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Result example

Here are γt(i) and ξt(i , j), plotted as a function of i , j and t, for
the words “one,” “two,” and “three.”
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Re-estimating the covariance

Σ′i =

∑T
t=1 γt(i)(~xt − ~µi )(~xt − ~µi )T∑T

t=1 γt(i)

Here’s a bad thing that can happen:

γt(i) is nonzero for fewer than D frames.

Therefore, the formula above results in a singular-valued Σ′i .
Thus |Σ′i | = 0, and Σ−1

i =∞.



Review Issues Observations Scaling Denominators Regularization Summary

Writing Baum-Welch as a Matrix Equation

Let’s re-write the M-step as a matrix equation. Define two new
matrices, X and W :

X =


(~x1 − ~µi )T
(~x2 − ~µi )T

...
(~xT − ~µi )T

 , W =



γ1(i)∑T
t=1 γt(i)

0 · · · 0

0 γ2(i)∑T
t=1 γt(i)

· · · 0

...
...

. . .
...

00 · · · γT (i)∑T
t=1 γt(i)
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Writing Baum-Welch as a Matrix Equation

In terms of those two matrices, the Baum-Welch re-estimation
formula is:

Σi = XTWX

. . . and the problem we have is that XTWX is singular, so that
(XTWX )−1 is infinite.
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Tikhonov Regularization

Andrey Tikhonov

Andrey Tikhonov studied
ill-posed problems (problems in
which we try to estimate more
parameters than the number of
data points, e.g., covariance
matrix has more dimensions than
the number of training tokens).

Tikhonov regularization

Tikhonov proposed a very simple
solution that guarantees Σi to be
nonsingular:

Σi = XTWX + αI

. . . where I is the identity matrix,
and α is a tunable
hyperparameter called the
“regularizer.”
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Result example

Here are the diagonal elements of the covariance matrices for each
state, before and after re-estimation. You can’t really see it in this
plot, but all the variances in the right-hand column have had the
Tiknonov regularizer α = 1 added to them.
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Numerical Issues: Hyperparameters

We now have solutions to the four main numerical issues.
Unfortunately, two of them require “hyperparameters” (a.k.a.
“tweak factors”).

The observation pdf floor.

The Tiknonov regularizer.

These are usually adjusted using the development test data, in
order to get best results.
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The Scaled Forward Algorithm

1 Initialize:

α̂1(i) =
1

g1
πibi (~x1)

2 Iterate:

α̃t(j) =
N∑
i=1

α̂t−1(i)aijbj(~xt)

gt =
N∑
j=1

α̃t(j)

α̂t(j) =
1

gt
α̃t(j)

3 Terminate:

ln p(X |Λ) =
T∑
t=1

ln gt
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The Scaled Backward Algorithm

1 Initialize:
β̂T (i) = 1, 1 ≤ i ≤ N

2 Iterate:

β̃t(i) =
N∑
j=1

aijbj(~xt+1)β̂t+1(j)

β̂t(i) =
1

ct
β̃t(i)

Rabiner uses ct = gt , but I recommend instead that you use

ct = max
i
β̃t(i)
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Posteriors, with compensation for zero denominators

1 The State Posterior:

γt(i) =


α̂t(i)β̂t(i)∑N

k=1 α̂t(k)β̂t(k)

∑N
k=1 α̂t(k)β̂t(k) > 0

0 otherwise

2 The Segment Posterior:

ξt(i , j) =


α̂t(i)aijbj (~xt+1)β̂t+1(j)∑N

k=1

∑N
`=1 α̂t(k)ak`b`(~xt+1)β̂t+1(`)

denom > 0

0 otherwise
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