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Hidden Markov Model

@ Start in state g; = i with pmf 7;.

@ Generate an observation, X, with pdf b;(X).

© Transition to a new state, g:1 = j, according to pmf a;;.
Q Repeat.
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The Three Problems for an HMM

© Recognition: Given two different HMMs, A; and Ay, and an
observation sequence X. Which HMM was more likely to have
produced X7 In other words, p(X|A1) > p(X|A2)?

@ Segmentation: What is p(q: = i|X,A\)?

© Training: Given an initial HMM A, and an observation
sequence X, can we find A such that p(X|\') > p(X|A)?
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The Forward Algorithm

Definition: at(i) = p(X, ..., X, g = i|\). Computation:

@ Initialize:

Q lterate:
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The Backward Algorithm

Definition: S:(i) = p(Xt+1, - .., XT|g: = i,\). Computation:
@ Initialize:
Br(i)=1, 1<i<N

Q lterate:
() = ajbi(%41)Bena(), 1<i<N, 1<t<T-1
j=1
© Terminate:

p(X|A) = ZTF, x1)B1(1)
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Segmentation

@ The State Posterior:

e (1)Be (/)
Zivzl Oét(k)ﬁt(k)

Ye(i) = p(ge = iIX,\) =

@ The Segment Posterior:
§e(isj) = p(ge = iy qe1 = jIX, A)

_ ae(i)ajbj(Xet1)Ber1(j)
Sohy Soeny (k) akebe(Re1)Ber1(€)
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Maximum Likelihood Training

Suppose we're given several observation sequences of the form
X = [%1,...,X7]. Suppose, also, that we have some initial guess
about the values of the model parameters (our initial guess doesn't
have to be very good). Maximum likelihood training means we
want to compute a new set of parameters, A = {7‘(;, af-j, bj’()?)}
that maximize p(X|\).
@ Initial State Probabilities: Find values of 7/, 1 </ <N,
that maximize p(X|N\).
@ Transition Probabilities: Find values of aj,
that maximize p(X|\).
© Observation Probabilities: Learn b}(X). What does that
mean, actually?

1<ij<N,
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Learning the Observation Probabilities

There are four typical ways of learning the observation
probabilities, b;(x).

@ Vector quantize X, using some VQ method. Suppose X is the
k' codevector; then we just need to learn b;(k) such that

@ Model b;(k) as a Gaussian or mixture Gaussian, and learn its
parameters.

© Model bj(k) as a neural net, and learn its parameters.
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Maximum Likelihood Training

For now, suppose that we have the following parameters that we

need to learn:
@ Initial State Probabilities: 7/ such that
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Maximum Likelihood Training with Known State Sequence

Impossible assumption: Suppose that we actually know the state
sequences, Q = [q1, ..., qr], matching with each observation
sequence X = [Xi,...,x7]. Then what would be the
maximum-likelihood parameters?
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Maximum Likelihood Training with Known State Sequence

Our goal is to find A = {7}, ajj, bj(k)} in order to maximize

£(A) = In p(Q, X|A)
=In7mg +1In bql(xl) +1Inag, g + bg,(x2) + ...

In7rq1—|-z Znulnau+2m,klnb(k
i=1 \j=1

where
@ njj is the number of times we saw (g = i, qr+1 = Jj),

@ mjx is the number of times we saw (q: = i, ky = k)
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Maximum Likelihood Training with Known State Sequence

N [N K
L(A) =Inmg, +Z Zn,-jln a,-j+2m;kln bi(k)
i=1 \j=1 k=1

When we differentiate that, we find the following derivatives:

o _[1i=a
on; 0 otherwise

oL njj
8a,j - a,-j
oL mjk

Obj(k) — bj(k)

These derivatives are never equal to zero! What went wrong?
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Maximum Likelihood Training with Known State Sequence

Here's the problem: we forgot to include the constraints

Ziﬂ-i = 11 ZJ a,_'j = 1, and Zk bj(k) =11
We can include the constraints using the method of Lagrange

multipliers. If we do that, we wind up with the solutions

1 .
;) = aq1
T = .
0 otherwise

LT
=

Hi

miy
bj(k) = —=
"

j

where A, p1;, and v; are arbitrary constants (called Lagrange
multipliers) that we can set to any value we want, provided that

the constraints are satisfied.
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Maximum Likelihood Training with Known State Sequence

Using the Lagrange multiplier method, we can show that the
maximum likelihood parameters for the HMM are:

@ Initial State Probabilities:

, _ 7 state sequences that start with g1 =i
e # state sequences in training data

@ Transition Probabilities:

, _ # frames in which g 1 =1i,q: = j

jj

# frames in which g;_1 = i
© Observation Probabilities:

# frames in which g = j, ky = k
bi(k) = : :

# frames in which q; = j
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© Baum-Welch: the EM Algorithm for Markov Models
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Expectation Maximization

When the true state sequence is unknown, then we can’t maximize
the likelihood p(X, Q|A\') directly. Instead, we maximize the
expected log likelihood. This is an instance of the EM algorithm,
where the visible training dataset is

D, ={x,...,X71}
and the hidden dataset is

Dp=A{q1,....q971}
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Expectation Maximization: the M-Step

In the M-step of EM, we use the E-step probabilities to calculate
the expected maximum likelihood estimators:

@ Initial State Probabilities:

L E [# state sequences that start with g1 = ]
! # state sequences in training data

@ Transition Probabilities:

,  E[# frames in which q;_1 =i, q; = j]

P =

E [# frames in which g;—1 = i]
© Observation Probabilities:

bjl-(k) _ E [# frames in which g; = j, k; = K]

E [# frames in which g; = j]
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Expectation Maximization: the E-Step

In order to find quantities like “the expected number of times
g1 = i," we need to do the E-Step of EM. The E-step calculates
probabilities like:

p(Dh|DV7A)

For example, in order to re-estimate bj(k), we need to know the #
frames in which g; = i. For that, we need

P(Qt = i’)?la)_é: <o 7;Ta A)
... but this is something we already know! It is

p(qe = i|X1, %o, ..., X7, \) = 7:(i)
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Expectation Maximization: the E-Step

Similarly, in order to re-estimate ajj, we need to know the #
frames in which g;_1 =/ and g; = j. For that, we need

p(qt—l = i7 at :.j’)?la)_(‘27 s 7)_(7—7 /\)
o In the t'" frame, the event q; = i, ;41 = j either happens, or
it doesn't happen.

@ So the following expectation is actually just a probability:

E [# times during the t*™® frame, in which q; = i, gs41 :j]
= p(q: =i, qe41 =)
= 51’(”./)
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The Baum-Welch Algorithm

@ Initial State Probabilities:

L E [# state sequences that start with g1 = ]
! # state sequences in training data
_ Zsequences 71(7)
# sequences
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The Baum-Welch Algorithm

@ Initial State Probabilities:

/ Zsequences ’}/1 ( I)

ﬂ'. =
! # sequences

@ Transition Probabilities:

;o E [# frames in which g;—1 =i, gt = J]
v E [# frames in which g;—1 = i]
ER)
TN T-1s (: -
Zj:l Dot &e(i))

a
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The Baum-Welch Algorithm

@ Initial State Probabilities:

/ — Zsequences ’yl(l)
# sequences

@ Transition Probabilities:

D Vg ()

D YD S A ()
© Observation Probabilities:

E [# frames in which q; = j, kt = K]
E [# frames in which g; = J]

bl(k) =
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The Baum-Welch Algorithm

@ Initial State Probabilities:

) _ Lsequences 11(7)
# sequences

@ Transition Probabilities:

T-1 P
a/" — t=1 gt(’a./)

i N T— ..
’ Ej:l Zt:ll &e(i.J)
© Observation Probabilities:
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Baum-Welch with Gaussian Probabilities

The requirement that we vector-quantize the observations is a
problem. It means that we can’t model the observations very
precisely.

It would be better if we could model the observation likelihood,
bj(X), as a probability density in the space X € RP. One way is to
use a parameterized function that is guaranteed to be a properly
normalized pdf. For example, a Gaussian:

bi(x) = N (x; iii, Z))
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Diagonal-Covariance Gaussian pdf

Let's assume the feature vector has D dimensions,

Xt = [Xt.1, ..., Xe,p]. The Gaussian pdf is
B 1 N
bi(R) = ook e b )

e
@)
The logarithm of a Gaussian is

. Lo o\ Te-1/2 =
Inbi(%) = —5 (% = ) "5 (% — i) + In % + )

where the constant is C = D In(2).
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Expectation maximization

Expectation maximization maximizes the expected log probability,
ie.,

N
EIn bi(%))] = _% S ) (5 - ) 5 (5 — i)+ 55+ )
i=1

If we include all of the frames, then we get

E [In p(X, Q|N)] = other terms
TR \
— 5> Ali) ((zt — i) T M (% — i) + In i + €
t=1 j=1

where the “other terms” are about a;; and 7, and have nothing to
do with ﬁ,‘ or X;.
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M-Step: optimum /i

First, let's optimize . We want

O—quZZ% — i) "I (K - i)

t=1 j=1
Re-arranging terms, we get

T =
7 = =1 D)%
q T
>e—17:(q)
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M-Step: optimum X

Second, let's optimize X;. In order to do this, we need to talk
about the gradient of a scalar w.r.t. a matrix. Let's suppose that

01 P1,D
Y = :
2

pp1 . Op

When we talk about Vyf(X), for some scalar function f(-), what
we mean is the matrix whose elements are

of .. _of

002 9p1,p
Vsf(X) = : - :

of of

e o
0pp,1 9op
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M-Step: optimum X

In particular, for a positive-definite, symmetric X, it's possible to
show that
Vshz|=x!

and

Ve(E— @) (% — fi) = —E % - )% — i) TE !
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Minimizing the cross-entropy: optimum o

Taking advantage of those facts, let's find
T N
0= V5, > > 7eli) (In[Si] + (% — i) 57 (% — i)
t=1 j=1
Re-arranging terms, we get

s _ i1 (@) (Fe — fig)(%e — fig) "
I 2;1 7:(q)
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Summary: Gaussian Observation PDFs

So we can use Gaussians for b;(X):
o E-Step: ()
N Qi I/Bt Il
S ) )
o M-Step:
- D)%
L Xl ()
5 = Lima () = @)% = )T
10
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The Baum-Welch Algorithm: Initial and Transition

Probabilities

@ Initial State Probabilities:

/ — Zsequences Wl(l)
# sequences

@ Transition Probabilities:

D Vg ()

D SPD SHETA(N)
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The Baum-Welch Algorithm: Observation Probabilities

@ Discrete Observation Probabilities:

@ Gaussian Observation PDFs:

T " =
Sl ()%

NS )

s _ iy ve()(Fe — i) (%e — i
ZL Ve (1)

)T
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Written Example

In a second-order Markov process, g; depends on both g;_» and
g¢_1, thus the model parameters are:

mj=pla1 =i,q2 =) (1)
djjk = p(q: = klgt—2 =i, qt—1 = 1) (2)
b(x) = p(X|q: = k) (3)

Suppose you have a sequence of observations for which you have
already a(i,j) and (¢(i, ), defined as

at(lv./):p()?ba)?hqt—l :/7(71::]‘/\) (4)
/Bt(iv.j):p()_(‘t-ﬁ-lv"'a)_(’T’qt—l:iyqt:j7/\) (5)

In terms of the quantities defined in Egs. (1) through (5), find a
formula that re-estimates af-jk so that, unless ajj is already optimal,

p(X|mi, ajy, bj(X)) > p(X|mi aji, bj(X))
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