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Bayesian Classifiers

A Bayesian classifier chooses a label, y € {0... Ny — 1}, that has
the minimum probability of error given an observation, X € RP:

—argmlnPr{Y#y }
= argmax Pr { }
= argmax py| g (v[%)

= argmax py (¥)pgy (X]y)
y
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The four Bayesian probabilities

e The posterior and evidence, py‘)?(y|>?) and py(X), can only
be learned if you have lots and lots of training data.

@ The prior, py(y), is very easy to learn.

@ The likelihood, p)ay()?\y), is easier to learn than the

posterior, but still somewhat challenging. This lecture is
about learning the likelihood.
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Training Data

A training dataset is a set of examples,
D = {(X0,¥0),-- -5 (Xn—1,¥n—1)}, from which you want to learn

e



Parametric Estimation

Parametric estimation means we assume that p)ay()?]y) has
some parametric functional form, with some learnable parameters,
©. For example, in a Gaussian classifier,

©={ji,x,:ye{0...Ny —1}}
and the parametric form is

1 g a2 \Ty—liz =
Lo(vl) = = a5 (X=iy) (X))
pX\Y(XD’) = (2W)D/2]Zy\1/2e S g



Maximum Likelihood Estimation

Maximum likelihood estimation finds the parameters that
maximize the likelihood of the data.

O m = argmax p (D|O)

Usually we assume that the data are sampled independently and
identically distributed, so that

n—1
O = argmax H p)?ly()?ﬂy,-)
i=0
n—1
= argmaxz In p)—("y(i}\y,-)
i=0



Example: Gaussians

For example, let's assume Gaussian likelihoods:

n—1
©mL = argmax H Pxy (Xilyi)

i=0
n—1

= argmaxz In p)ay(f(',-]y,-)
i=0
n—1

= argmin Y (In[Sy, | + (% — /i) "5, (% — i)
i=0



Example: Gaussians

n—1
O = argmin Y (In[E,,| + (5 — i) "%, (% — i)
i=0

If we differentiate, and set the derivative to zero, we get

1
fiy ML = Py X;
Y iyi=y
~ 1 . NN .
Xy ML= n (Xi — fiy)(% My)T
Y iyi=y

where ny is the number of tokens from class y; = y.
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Hidden or Unobserved Variables

Many real-world problems have hidden or unobserved random

variables.

If there are hidden variables, we can imagine that the training
dataset is divided into two parts: D, is the visible part (the
variables whose values we know), and D, is the hidden part (the
variables we don't know).

ML estimation now needs to find

O = argmaxp (D, |0)
o

= argmax Y _ p(Dy, Ds|0)
o o
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Example: Missing Data

For example, suppose that the training dataset only has two
tokens, D = {xp, x1}. Each vector should contain D
measurements, X; = [xjo, ... ,x,-,D_l]T. Unfortunately, due to
mechanical equipment failure, we are missing the measurements of
X0,16 and X1,2-

The visible and hidden training datasets are:

Dy = {X0,0;--+,X0,15,X0,175 - - - y X1,1, X1,3; - - - » X1,D—1}

Dy = {x0.16, x12}

...and the ML parameters are:

éML = argmax//Pr {D|©} dxp 16dx1 2
€]
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Example: Mixture Models

The more relevant case (the reason we really care about the
expectation maximization algorithm) is the mixture-density
situation, for example, Gaussian mixture models.

Remember the pdf model for a GMM:

Ny —1

P)?|y(QIY) = Z Cy kN (X[ iy k Zy k)
k=0

...where, in order to make sure that 1 = fp)ay()?\y)d)?, we have
to make sure that

¢,k >0 and ch,k =1
k
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Example: Mixture Models

N —1

px|y X’y Z Cy, kN(X‘Uy k> yk)
k=0

Think about what's going on when we generate X; from y;:

o First, we pick a cluster k;, according to the probability
distribution

pK‘y(k]y) = ¢,k where ¢, , >0 and Z k=1
k

@ Second, we generate the observation vector from the chosen
cluster:

P>?|K,y(>?\kv)/) = N (X|fyk, Xy k)
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Example: Mixture Models

We don’t have any labels to tell us which cluster corresponds to
each training token, so the cluster labels are hidden.
The visible and hidden training datasets are:

DV = {(zo,yO)a ceey ()?nflvynfl)}
Dn=1ko,--- kn—1}
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Example: Mixture Models

The maximum likelihood parameters are:

Oy = argmaxz Pr{D,,Dy|©}
°o I
n—1 Nkg-—1
:argmaxZIn Z Cyi kN (Xil ;15 y;.1)

i=0 k=0
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The Problem with Missing Data

OuL = argmaxz Pr{D,,Dy|©}
S}

D
n—1 NK—].

gm0 6N Gl b Zy)
i=0 k=0

The problem with mixture models is the same as the problem with
any type of missing data:

@ The log of a sum cannot be simplified.

@ Therefore, differentiating the log of a sum usually results in a
complicated equation that has no closed-form solution.

@ In fact, the solution is usually not even unique.
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The Problem with Missing Data

@ Standard ML estimation works really well because we use
logarithms to turn the product into a sum:
n—1
Om = argmax [ [ pg;y (%ilvi)
i=0
n—1
= argmaxz In P)2|y(>?i|}’i)
i=0
@ But suppose that you also need to estimate some hidden
variable, k. Then you need a sum of logs of sums:
n—1

O = argmax H prmy()_(}, klyi)
i=0 k

n—1
— argmax 3103 by oy (5 )
i=0 k



The Problem with Missing Data

Let's write it like this:
O = argmax L(©),
where £(©) is the log likelihood of the training data:
£(©) = Inp(D,[6)
=In> p(Dy,Dy|®)

Dy



Solution: The EM Inequality

Expectation Maximization uses the idea that the log of a sum is
greater than or equal to the average of the logs. For any set of
positive numbers x(k), if you can define a pmf such that

>« P(k) =1, then

In> " x(k) > In max x(k) > > p(k) Inx(k)
k k

In > x(k)
k
> p(k)Inx(k)

k




Solution: The EM Inequality

Let's make the following definitions:
x(Dp) = p(Dy, Dy|O)
p(Dh) = p(D4|Dy, ©),

where © and © can be any two estimates of the parameters. Then
the EM inequality says

Z Zp ) In x(k
k
or

In Z p(DVa Dh|@) > Z p(Dh|DV7 é) In p(DW Dh|@)

Dy, Dy,



The Q Function

The name “expectation” in “expectation maximization” comes
from the lower bound on the previous slide. That lower bound is
usually called the "“Q function.” It looks like this:

Q(©,8) = > p(Dy|Dy,0)In p(Dy, D|O)

Dy

—E [mp(pv,phye) ‘Dv,é]

The word “maximization” comes from the following idea: since
L(©) > Q(O,0), how about if we choose

©* = argmax Q(0, ©)
©



The Expectation Maximization Algorithm

The expectation maximization algorithm has the following steps:
Initialize: Find the best initial guess, ©*, that you can.
lterate: Repeat the following steps. Set © = ©*, then
E-Step: Compute the posterior probabilities of
the hidden variables

p(Dh|DV7 é)
M-Step: Find new values of © that maximize
Q(©,0):
©* = argmax Q(O©, ©)
©
Terminate: If ©* does not change from one iteration to the

next, it means you have reached a local maximum of
both @ and L:

©" = argmax L(©) = argmax Q(©, ©)
(S] (C]
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EM for Gaussian Mixture Models

For a Gaussian mixture model,

@ The observed dataset includes the labels, and the feature
vectors:

DV = {(;{07)/0)7 sy ()_(n—layn—l)}
@ The hidden dataset is the cluster identity labels:

Dy = {k07 SRR kn—l}



E-Step for Gaussian Mixture Models

For a Gaussian mixture model, the E-step probability is
p(Dh‘Dw @) = PK‘)‘(”y(k‘)?,)/)

Py (KY)pg v (XK, )
>0 Priy (Uy)Pg kv (K16, y)

In order to solve the last equation, we make these substitutions:
pr|y (kly) = ¢y«
p)?\Y,K(’?b’a k) = N (X|fiyk> Zy k)

which gives us something that’s often called the “gamma

probability:”

_ CYI,kN()_(;’ﬁYI:k7 Zy,',k)
>0 Syt N (Kl iy, 0, Ty, 0)

Prix.y (kIXi, yi) = 7i(k)



M-Step for Gaussian Mixture Models

For a Gaussian mixture model, the Q function is

Ep, [In p(Dp, Dy, ©)] = Ex InpK)?’Y(k,)_(’,y)]
= E4 [In py(y) +In Cy.k + In/\/’(f(][[%k, Zka)]

= npy(y) ~ 3 In(2)

1 — — — — —
+ ik ('n Sk~ 5 ('n Syl A+ (K = fiyu) T2, (K — My,k)>)

k



M-Step for Gaussian Mixture Models

Maximizing the Q function gives

_ny _ Nyk
pY(y) - n ) Cy,k ny )
1 n—1
Ay k = o vi(k)Xi,
Yk izo
1 n—1
ok =— %ilk)(& — iy ) (% — iyx) T,
Nyk 2o

where the “soft counts” are the sums of the gamma probabilities,
across all tokens

Ny .k = Z 7i(k)

iyi=y
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Summary

@ Maximum likelihood estimation finds model parameters that
maximize the log likelihood:

© = argmax L(©)

@ Expectation maximization finds model parameters that
maximize the expected log likelihood:

© = argmax Q(©, ©)
@ Applying EM to a GMM gives:

_ Ny
Cy.k = n,
1 n—1
/jy,k = — ’Yi(k))?i
fly.k 2o
n—1
1 S o L NT
Yyk= o Vi(K)(Xi = fiy i) (% — fy k)
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