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Bayesian Classifiers

A Bayesian classifier chooses a label, y ∈ {0 . . .NY − 1}, that has
the minimum probability of error given an observation, ~x ∈ <D :

ŷ = argmin
y

Pr
{
Y 6= y |~X = ~x

}
= argmax

y
Pr
{
Y = y |~X = ~x

}
= argmax

y
p
Y |~X (y |~x)

= argmax
y

pY (ŷ)p~X |Y (~x |y)
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The four Bayesian probabilities

The posterior and evidence, p
Y |~X (y |~x) and p~X (~x), can only

be learned if you have lots and lots of training data.

The prior, pY (y), is very easy to learn.

The likelihood, p~X |Y (~x |y), is easier to learn than the

posterior, but still somewhat challenging. This lecture is
about learning the likelihood.
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Training Data

A training dataset is a set of examples,
D = {(~x0, y0), . . . , (~xn−1, yn−1)}, from which you want to learn
p~X |Y (~x |y).
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Parametric Estimation

Parametric estimation means we assume that p~X |Y (~x |y) has

some parametric functional form, with some learnable parameters,
Θ. For example, in a Gaussian classifier,

Θ = {~µy ,Σy : y ∈ {0 . . .NY − 1}}

and the parametric form is

p~X |Y (~x |y) =
1

(2π)D/2|Σy |1/2
e−

1
2

(~x−~µy )T Σ−1
y (~x−~µy )
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Maximum Likelihood Estimation

Maximum likelihood estimation finds the parameters that
maximize the likelihood of the data.

Θ̂ML = argmax p (D|Θ)

Usually we assume that the data are sampled independently and
identically distributed, so that

Θ̂ML = argmax
n−1∏
i=0

p~X |Y (~xi |yi )

= argmax
n−1∑
i=0

ln p~X |Y (~xi |yi )
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Example: Gaussians

For example, let’s assume Gaussian likelihoods:

Θ̂ML = argmax
n−1∏
i=0

p~X |Y (~xi |yi )

= argmax
n−1∑
i=0

ln p~X |Y (~xi |yi )

= argmin
n−1∑
i=0

(
ln |Σyi |+ (~xi − ~µyi )

TΣ−1
yi

(~xi − ~µyi )
)
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Example: Gaussians

Θ̂ML = argmin
n−1∑
i=0

(
ln |Σyi |+ (~xi − ~µyi )

TΣ−1
yi

(~xi − ~µyi )
)

If we differentiate, and set the derivative to zero, we get

µ̂y ,ML =
1

ny

∑
i :yi=y

~xi

Σ̂y ,ML =
1

ny

∑
i :yi=y

(~xi − ~µy )(~xi − ~µy )T

where ny is the number of tokens from class yi = y .
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Hidden or Unobserved Variables

Many real-world problems have hidden or unobserved random
variables.
If there are hidden variables, we can imagine that the training
dataset is divided into two parts: Dv is the visible part (the
variables whose values we know), and Dh is the hidden part (the
variables we don’t know).
ML estimation now needs to find

Θ̂ML = argmax
Θ

p (Dv |Θ)

= argmax
Θ

∑
Dh

p (Dv ,Dh|Θ)
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Example: Missing Data

For example, suppose that the training dataset only has two
tokens, D = {~x0, ~x1}. Each vector should contain D
measurements, ~xi = [xi ,0, . . . , xi ,D−1]T . Unfortunately, due to
mechanical equipment failure, we are missing the measurements of
x0,16 and x1,2.
The visible and hidden training datasets are:

Dv = {x0,0, . . . , x0,15, x0,17, . . . , x1,1, x1,3, . . . , x1,D−1}
Dh = {x0,16, x1,2}

. . . and the ML parameters are:

Θ̂ML = argmax
Θ

∫ ∫
Pr {D|Θ} dx0,16dx1,2
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Example: Mixture Models

The more relevant case (the reason we really care about the
expectation maximization algorithm) is the mixture-density
situation, for example, Gaussian mixture models.
Remember the pdf model for a GMM:

p~X |Y (~x |y) =

NK−1∑
k=0

cy ,kN (~x |~µy ,k ,Σy ,k)

. . . where, in order to make sure that 1 =
∫
p~X |Y (~x |y)d~x , we have

to make sure that

cy ,k ≥ 0 and
∑
k

cy ,k = 1
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Example: Mixture Models

p~X |Y (~x |y) =

NK−1∑
k=0

cy ,kN (~x |~µy ,k ,Σy ,k)

Think about what’s going on when we generate ~xi from yi :

First, we pick a cluster ki , according to the probability
distribution

pK |Y (k |y) = cy ,k where cy ,k ≥ 0 and
∑
k

cy ,k = 1

Second, we generate the observation vector from the chosen
cluster:

p~X |K ,Y (~x |k, y) = N (~x |~µy ,k ,Σy ,k)
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Example: Mixture Models

We don’t have any labels to tell us which cluster corresponds to
each training token, so the cluster labels are hidden.
The visible and hidden training datasets are:

Dv = {(~x0, y0), . . . , (~xn−1, yn−1)}
Dh = {k0, . . . , kn−1}
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Example: Mixture Models

The maximum likelihood parameters are:

Θ̂ML = argmax
Θ

∑
Dh

Pr {Dv ,Dh|Θ}

= argmax
n−1∑
i=0

ln

NK−1∑
k=0

cyi ,kN (~xi |~µyi ,k ,Σyi ,k)
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The Problem with Missing Data

Θ̂ML = argmax
Θ

∑
Dh

Pr {Dv ,Dh|Θ}

= argmax
n−1∑
i=0

ln

NK−1∑
k=0

cyi ,kN (~xi |~µyi ,k ,Σyi ,k)

The problem with mixture models is the same as the problem with
any type of missing data:

The log of a sum cannot be simplified.

Therefore, differentiating the log of a sum usually results in a
complicated equation that has no closed-form solution.

In fact, the solution is usually not even unique.
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The Problem with Missing Data

Standard ML estimation works really well because we use
logarithms to turn the product into a sum:

Θ̂ML = argmax
n−1∏
i=0

p~X |Y (~xi |yi )

= argmax
n−1∑
i=0

ln p~X |Y (~xi |yi )

But suppose that you also need to estimate some hidden
variable, k. Then you need a sum of logs of sums:

Θ̂ML = argmax
n−1∏
i=0

∑
k

p~X ,K |Y (~xi , k |yi )

= argmax
n−1∑
i=0

ln
∑
k

p~X ,K |Y (~xi , k |yi )
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The Problem with Missing Data

Let’s write it like this:

Θ̂ML = argmaxL(Θ),

where L(Θ) is the log likelihood of the training data:

L(Θ) = ln p (Dv |Θ)

= ln
∑
Dh

p (Dv ,Dh|Θ)
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Solution: The EM Inequality

Expectation Maximization uses the idea that the log of a sum is
greater than or equal to the average of the logs. For any set of
positive numbers x(k), if you can define a pmf such that∑

k p(k) = 1, then

ln
∑
k

x(k) ≥ ln max
k

x(k) ≥
∑
k

p(k) ln x(k)
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Solution: The EM Inequality

Let’s make the following definitions:

x(Dh) = p(Dv ,Dh|Θ)

p(Dh) = p(Dh|Dv , Θ̂),

where Θ and Θ̂ can be any two estimates of the parameters. Then
the EM inequality says

ln
∑
k

x(k) ≥
∑
k

p(k) ln x(k)

or

ln
∑
Dh

p(Dv ,Dh|Θ) ≥
∑
Dh

p(Dh|Dv , Θ̂) ln p(Dv ,Dh|Θ)
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The Q Function

The name “expectation” in “expectation maximization” comes
from the lower bound on the previous slide. That lower bound is
usually called the “Q function.” It looks like this:

Q(Θ, Θ̂) =
∑
Dh

p(Dh|Dv , Θ̂) ln p(Dv ,Dh|Θ)

= E
[
ln p(Dv ,Dh|Θ)

∣∣∣Dv , θ̂
]

The word “maximization” comes from the following idea: since
L(Θ) ≥ Q(Θ, Θ̂), how about if we choose

Θ∗ = argmax
Θ

Q(Θ, Θ̂)
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The Expectation Maximization Algorithm

The expectation maximization algorithm has the following steps:

Initialize: Find the best initial guess, Θ∗, that you can.

Iterate: Repeat the following steps. Set Θ̂ = Θ∗, then
E-Step: Compute the posterior probabilities of

the hidden variables

p(Dh|Dv , Θ̂)

M-Step: Find new values of Θ that maximize
Q(Θ, Θ̂):

Θ∗ = argmax
Θ

Q(Θ, Θ̂)

Terminate: If Θ∗ does not change from one iteration to the
next, it means you have reached a local maximum of
both Q and L:

Θ∗ = argmax
Θ
L(Θ) = argmax

Θ
Q(Θ,Θ)
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EM for Gaussian Mixture Models

For a Gaussian mixture model,

The observed dataset includes the labels, and the feature
vectors:

Dv = {(~x0, y0), . . . , (~xn−1, yn−1)}

The hidden dataset is the cluster identity labels:

Dh = {k0, . . . , kn−1}
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E-Step for Gaussian Mixture Models

For a Gaussian mixture model, the E-step probability is

p(Dh|Dv ,Θ) = p
K |~X ,Y (k |~x , y)

=
pK |Y (k |y)p~X |K ,Y (~x |k, y)∑
` pK |Y (`|y)p~X |K ,Y (~x |`, y)

In order to solve the last equation, we make these substitutions:

pK |Y (k|y) = cy ,k

p~X |Y ,K (~x |y , k) = N (~x |~µy ,k ,Σy ,k)

which gives us something that’s often called the “gamma
probability:”

p
K |~X ,Y (k|~xi , yi ) = γi (k) =

cyi ,kN (~xi |~µyi ,k ,Σyi ,k)∑
` cyi ,`N (~xi |~µyi ,`,Σyi ,`)
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M-Step for Gaussian Mixture Models

For a Gaussian mixture model, the Q function is

EDh
[ln p(Dh,Dv ,Θ)] = Ek

[
ln p

K , ~X ,Y
(k, ~x , y)

]
= Ek [ln pY (y) + ln cy ,k + lnN (~x |~µy ,k ,Σy ,k)]

= ln pY (y)− D

2
ln(2π)

+
∑
k

γi (k)

(
ln cy ,k −

1

2

(
ln |Σy ,k |+ (~xi − ~µy ,k)TΣ−1

y (~xi − ~µy ,k)
))
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M-Step for Gaussian Mixture Models

Maximizing the Q function gives

pY (y) =
ny
n
, cy ,k =

ny ,k
ny

,

~µy ,k =
1

ny ,k

n−1∑
i=0

γi (k)~xi ,

Σy ,k =
1

ny ,k

n−1∑
i=0

γi (k)(~xi − ~µy ,k)(~xi − ~µy ,k)T ,

where the “soft counts” are the sums of the gamma probabilities,
across all tokens

ny ,k =
∑
i :yi=y

γi (k)



Bayesian ML Hidden EM GMM Summary

Outline

1 Review: Bayesian Classifiers

2 Maximum Likelihood Parametric Estimation

3 Hidden or Unobserved Variables

4 The Expectation-Maximization Algorithm

5 EM for Gaussian Mixture Models

6 Summary



Bayesian ML Hidden EM GMM Summary

Summary

Maximum likelihood estimation finds model parameters that
maximize the log likelihood:

Θ = argmaxL(Θ)

Expectation maximization finds model parameters that
maximize the expected log likelihood:

Θ = argmaxQ(Θ, Θ̂)

Applying EM to a GMM gives:

cy ,k =
ny ,k
ny

~µy ,k =
1

ny ,k

n−1∑
i=0

γi (k)~xi

Σy ,k =
1

ny ,k

n−1∑
i=0

γi (k)(~xi − ~µy ,k)(~xi − ~µy ,k)T
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