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Scalar Gaussian random variables

pX (x) =
1√

2πσ2
e−

1
2 ( x−µ

σ )
2
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Scalar Gaussian random variables

µ = E [X ], σ2 = E [(X − µ)2]
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Gaussian random vector

p~X (~x) =
1

(2π)D/2|Σ|1/2
e−

1
2

(~x−~µ)T Σ−1(~x−~µ)
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Gaussian random vector

~x =

 x0

· · ·
xD−1


~µ = E [~x ] =

 µ0

· · ·
µD−1



Example: Instances of a Gaussian
random vector
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Gaussian random vector

Σ =


σ2

0 ρ0,1
. . .

ρ1,0
. . . ρD−2,D−1

. . . ρD−1,D−2 σ2
D−1


where

ρij = E [(xi − µi )(xj − µj)]

σ2
i = E [(xi − µi )2]

Example: Instances of a
Gaussian random vector
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Maximum Likelihood Parameter
Estimation

In the real world, we don’t know ~µ
and Σ!
If we have a training database
D = {~x0, . . . , ~xM−1}, we can
estimate ~µ and Σ according to

{
µ̂ML, Σ̂ML

}
= argmax

M−1∏
m=0

p(~xm|~µ,Σ)

= argmax
M−1∑
m=0

ln p(~xm|~µ,Σ)

Examples of ~xm − ~µ
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Maximum Likelihood Parameter
Estimation

If you differentiate the RHS on the
previous slide, and set it to zero,
you find that the maximum
likelihood solution is

µ̂ML =
1

M

M−1∑
m=0

~xm

Σ̂ML =
1

M

M−1∑
m=0

(~xm − ~µ)(~xm − ~µ)T

Examples of ~xm − ~µ
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Sample Mean, Sample Covariance

The ML estimate of Σ is usually
too small. It is better to adjust it
slightly. The following are the
unbiased estimators of ~µ and Σ,
also called the sample mean and
sample covariance:

~µ =
1

M

M−1∑
m=0

~xm

Σ =
1

M − 1

M−1∑
m=0

(~xm − ~µ)(~xm − ~µ)T

Examples of ~xm − ~µ
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Sample Mean, Sample Covariance

~µ =
1

M

M−1∑
m=0

~xm

Σ =
1

M − 1

M−1∑
m=0

(~xm − ~µ)(~xm − ~µ)T

Sample mean and sample
covariance are not the same as real
mean and real covariance, but we’ll
use the same letters (~µ and Σ)
unless the problem requires us to
distinguish.

Examples of ~xm − ~µ
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Review: Eigenvalues and eigenvectors

The right eigenvectors of a D × D square matrix, A, are the
vectors ~v such that

A~v = λ~v (1)

The scalar, λ, is called the eigenvalue. It’s only possible for Eq. (1)
to have a solution if

|A− λI | = 0 (2)
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Left and right eigenvectors

We’ve been working with right eigenvectors and right eigenvalues:

A~vd = λd~vd

There may also be left eigenvectors, which are row vectors ~ud and
corresponding left eigenvalues κd :

~uTd A = κd~u
T
d
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Eigenvectors on both sides of the matrix

You can do an interesting thing if you multiply the matrix by its
eigenvectors both before and after:

~uTi (A~vj) = ~uTi (λj~vj) = λj~u
T
i ~vj

. . . but. . .
(~uTi A)~vj = (κi ~u

T
i )~vj = κi ~u

T
i ~vj

There are only two ways that both of these things can be true.
Either

κi = λj or ~uTi ~vj = 0
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Left and right eigenvectors must be paired!!

There are only two ways that both of these things can be true.
Either

κi = λj or ~uTi ~vj = 0

That means, if the eigenvalues are distinct, then there is at most
one λi that can equal each κi :{

i 6= j ~uTi ~vj = 0

i = j κi = λi
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Symmetric matrices: left=right

If A is symmetric (A = AT ), then the left and right eigenvectors
and eigenvalues are the same, because

λi ~u
T
i = ~uTi A = (AT ~ui )

T = (A~ui )
T

. . . and that last term is equal to λi ~u
T
i if and only if ~ui = ~vi .
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Symmetric matrices: eigenvectors are orthonormal

Let’s combine the following facts:

~uTi ~vj = 0 for i 6= j — any square matrix with distinct
eigenvalues

~ui = ~vi — symmetric matrix

~vTi ~vi = 1 — standard normalization of eigenvectors for any
matrix (this is what ‖~vi‖ = 1 means).

Putting it all together, we get that

~vTi ~vj =

{
1 i = j

0 i 6= j
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The eigenvector matrix

So if A is symmetric with distinct eigenvalues, then its eigenvectors
are orthonormal:

~vTi ~vj =

{
1 i = j

0 i 6= j

We can write this as
V TV = I

where
V = [~v0, . . . , ~vD−1]
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The eigenvector matrix is orthonormal

V TV = I

. . . and it also turns out that

VV T = I

Proof: VV T = VIV T = V (V TV )V T = (VV T )2, but the only
matrix that satisfies VV T = (VV T )2 is VV T = I .
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Eigenvectors orthogonalize a symmetric matrix

So now, suppose A is symmetric:

~vTi A~vj = ~vTi (λj~vj) = λj~v
T
i ~vj =

{
λj , i = j

0, i 6= j

In other words, if a symmetric matrix has D eigenvectors with
distinct eigenvalues, then its eigenvectors orthogonalize A:

V TAV = Λ

Λ =

 λ0 0 0
0 . . . 0
0 0 λD−1
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A symmetric matrix is the weighted sum of its eigenvectors:

One more thing. Notice that

A = VV TAVV T = VΛV T

The last term is

[~v0, . . . , ~vD−1]

 λ0 0 0
0 . . . 0
0 0 λD−1


 ~vT0

...
~vTD−1

 =
D−1∑
d=0

λd~vd~v
T
d
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Summary: properties of symmetric matrices

If A is symmetric with D eigenvectors, and D distinct eigenvalues,
then

A = VΛV T

Λ = V TAV

VV T = V TV = I
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How do you classify an image?

Suppose we have a test image, ~xtest. We want to figure out: who
is this person?

Test Datum ~xtest:
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Training Data?

In order to classify the test image, we need some training data. For
example, suppose we have the following four images in our training
data. Each image, ~xm, comes with a label, ym, which is just a
string giving the name of the individual.

Training
Datum:
y0 =Colin
Powell:

~x0 =

Training
Datum
y1 =Gloria
Arroyo:

~x1 =

Training
Datum
y2 =Megawati
Sukarnoputri:

~x2 =

Training
Datum
y3 =Tony
Blair:

~x3 =
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Nearest Neighbors Classifier

A “nearest neighbors classifier” makes the following guess: the test
vector is an image of the same person as the closest training vector:

ŷtest = ym∗ , m∗ =
M−1

argmin
m=0

‖~xm − ~xtest‖

where “closest,” here, means Euclidean distance:

‖~xm − ~xtest‖ =

√√√√D−1∑
d=0

(xmd − xtest,d)2



Review Eigenvectors NN PCA Gram Summary

Improved Nearest Neighbors: Eigenface

The problem with nearest-neighbors is that subtracting one
image from another, pixel-by-pixel, results in a measurement
that is dominated by noise.

We need a better measurement.

The solution is to find a signal representation, ~ym, such that
~ym summarizes the way in which ~xm differs from other faces.

If we find ~ym using principal components analysis, then ~ym is
called an “eigenface” representation.
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Sample covariance

Σ =
1

M − 1

M−1∑
m=0

(~xm − ~µ)(~xm − ~µ)T

=
1

M − 1
XTX

. . . where X is the centered data
matrix,

X =

 (~x0 − ~µ)T

...
(~xM−1 − ~µ)T



Examples of ~xm − ~µ
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Centered data matrix

X =

 (~x0 − ~µ)T

...
(~xM−1 − ~µ)T



Examples of ~xm − ~µ
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Sample covariance

Σ =
1

M − 1
XTX

The matrix XTX is called the
sum-of-squares (SS) matrix. It is
related to the sample covariance
matrix by a scalar multiplier
(M − 1).

Examples of ~xm − ~µ
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Principal component axes

XTX is symmetric!
Therefore,

XTX = VΛV T

V = [~v0, . . . , ~vD−1], the
eigenvectors of XTX , are
called the principal
component axes, or
principal component
directions.

Principal component axes
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Principal component axes

Σ = 1
M−1X

TX , therefore

Σ = V

(
1

M − 1
Λ

)
V T

V = [~v0, . . . , ~vD−1] are the
eigenvectors of both the
sum-of-squares matrix
and the covariance
matrix. Λ are the
eigenvalues of the
sum-of-squares matrix,
equal to M − 1 times the
eigenvalues of the
covariance matrix.

Principal component axes
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Principal components

Remember that the eigenvectors of a matrix diagonalize it. So if V
are the eigenvectors of XTX , then

V TXTXV = Λ

~vTi XTX~vj =

{
λj λi = λj

0 λi 6= λj

Remember that the rows of X are (~xm − ~µ)T , so if we define

(~xm − ~µ)TV = ~yTm , Y =

 ~yT0
...

~yTM−1


Then we have that Y TY = Λ. In other words, the covariance
matrix of the ~y vectors is a diagonal!
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Principal components

~ym = V T (~xm − ~µ)
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Principal components

Let’s write Y = XV , and Y T = V TXT . In other words,

(~xm − ~µ)TV = ~yTm

XV = Y

V TXTXV = Y TY = Λ

~ym = [ym,0, . . . , ym,D−1]T is the vector of principal components of
~xm. Expanding the formula Y TY = Λ, we discover that PCA
orthogonalizes the dataset:

M−1∑
m=0

yimyjm =

{
λi i = j

0 i 6= j
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Principal components are uncorrelated, and PC with larger
eigenvalues have more energy

In the following figure, notice that (1) the principal components
are uncorrelated with one another, (2) the eigenvalues have been
sorted so that λ0 > λ1 > λ2 and so on. With this sorting, you see
that the the first PCA, ym,0, has the biggest variance:
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Eigenvalue=Energy of the Principal Component

The total dataset energy, along the i th principal component
direction, is

M−1∑
m=0

y2
mi = λi

But remember that V TV = I . Therefore, the total dataset energy
is the same, whether you calculate it in the original image domain,
or in the PCA domain:

M−1∑
m=0

D−1∑
d=0

(xmd − µd)2 =
M−1∑
m=0

D−1∑
i=0

y2
mi =

D−1∑
i=0

λi
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Energy spectrum=Fraction of energy explained

The “energy spectrum” is energy as a function of basis vector
index. There are a few ways we could define it, but one useful
definition is:

E [k] =

∑M−1
m=0

∑k−1
i=0 y2

mi∑M−1
m=0

∑D−1
i=0 y2

mi

=

∑k−1
i=0 λi∑D−1
i=0 λi
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Energy spectrum=Fraction of energy explained
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Gram matrix

XTX is usually called the
sum-of-squares matrix.

1
M−1X

TX is the sample
covariance.

G = XXT is called the gram
matrix. Its (i , j)th element is
the dot product between the
i th and j th data samples:

gij = (~xi − ~µ)T (~xj − ~µ)

Gram matrix
g01 = (~x0 − ~µ)T (~x1 − ~µ)
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Eigenvectors of the Gram matrix

XXT is also symmetric! So it has
orthonormal eigenvectors:

XXT = UΛUT

UUT = UTU = I

Surprising Fact: XTX and
XXT have the same eigenvalues
(Λ), but different eigenvectors
(V vs. U).

Gram matrix
g01 = (~x0 − ~µ)T (~x1 − ~µ)
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Why the Gram matrix is useful:

Suppose that D ∼ 240000 pixels per image, but M ∼ 240 different
images. Then, in order to perform this eigenvalue analysis:

XTX = VΛV T

. . . requires factoring a 240000th-order polynomial
(|XTX − λI | = 0), then solving 240000 simultaneous linear
equations in 240000 unknowns to find each eigenvector
(XTX~vd = λd~vd). If you try doing that using np.linalg.eig,
your PC will be running all day. On the other hand,

XXT = UΛUT

requires only 240 equations in 240 unknowns. Educated experts
agree: 2402 � 2400002.
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Singular Values

Both XTX and XXT are positive semi-definite, meaning that
their eigenvalues are non-negative, λd ≥ 0.

The singular values of X are defined to be the square roots
of the eigenvalues of XTX and XXT :

S =

 s0 0 0
0 . . . 0
0 0 sD−1

 , Λ = S2 =

 s2
0 0 0
0 . . . 0
0 0 s2

D−1
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Singular Value Decomposition

Let’s use the equation Λ = SS in the PCA decomposition formula:

XTX = VΛV T

= VSSV T

= VSISV T

. . . where the last equation just inserted an identity matrix. But
remember, since U is orthonormal, we can write I = UTU, or

XTX = VSUTUSV T

= (USV T )T (USV T )
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Singular Value Decomposition

Let’s try the same thing, but starting with the Gram matrix
instead: formula:

XXT = UΛUT

= USSUT

= USISUT

= USV TVSUT

= (USV T )(USV T )T
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Singular Value Decomposition

ANY M × D MATRIX, X , can be written as X = USV T .

U = [~u0, . . . , ~uM−1] are the eigenvectors of XXT .

V = [~v0, . . . , ~vD−1] are the eigenvectors of XTX .

S =

 s0 0 0 0 0
0 . . . 0 0 0
0 0 smin(D,M)−1 0 0

 are the singular values.

S has some all-zero columns if M > D, or all-zero rows if M < D.
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What np.linalg.svd does

First, np.linalg.svd decides whether it wants to find the
eigenvectors of XTX or XXT : it just checks to see whether
M > D or vice versa. If it discovers that M < D, then:

1 Compute XXT = UΛUT , and S =
√

Λ. Now we have U and
S , we just need to find V .

2 Since XT = VSUT , we can get V by just multiplying:

Ṽ = XTU

. . . where Ṽ = VS is exactly equal to V , but with each
column scaled by a different singular value. So we just need to
normalize:

‖~vi‖ = 1, vi0 > 0
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Methods that solve PCA when # faces ll # features

The covariance matrix method: (eigenvector analysis of
XTX ) gives the right answer, but takes a very long time.

The gram matrix method is much faster: Apply
np.linalg.eig to get U from XXT . Multiply Ṽ = XTU,
Tricky point: normalize so that ‖~vk‖ = 1, vk,1 ≥ 0.

The SVD method: Applying np.linalg.svd(X). Speed =
min(speed(covariance),speech(gram)). Tricky point:
λm = s2

m.

Whatever you do, be sure to sort the eigenvalues so |λk | ≥ |λk+1|.
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Summary

Symmetric matrices:

A = VΛV T , V TAV = Λ, V TV = VV T = I

Centered dataset:

X =

 (~x0 − ~µ)T

...
(~xM−1 − ~µ)T


Singular value decomposition:

X = USV T

where V are eigenvectors of the sum-of-squares matrix, U are
eigenvectors of the gram matrix, and Λ = S2 are their shared
eigenvalues.
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