Topics	Signal Processing	LPC	Linear Algebra	Images	Flow	Summary

Lecture 9: Exam 1 Review

Mark Hasegawa-Johnson

ECE 417: Multimedia Signal Processing, Fall 2021

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Topics	Signal Processing	LPC	Linear Algebra	Images	Flow	Summary
00	00000	000000	000	00000	000	00

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

1 Topics

- 2 Signal Processing
- 3 LPC
- 4 Linear Algebra
- 5 Image Processing
- 6 Optical Flow

O Summary

Topics	Signal Processing	LPC	Linear Algebra	Images	Flow	Summary
●○		0000000	000	00000	000	00
Outlin	e					

1 Topics

2 Signal Processing

3 LPC

- 4 Linear Algebra
- 5 Image Processing
- 6 Optical Flow
- 7 Summary

Topics	Signal Processing	LPC	Linear Algebra	Images	Flow	Summary
○●		0000000	000	00000	000	00
Topics						

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- HW1: Signal Processing Review
- MP1: LPC
- HW2: Linear Algebra
- MP2: Image Processing & Optical Flow

Topics	Signal Processing	LPC	Linear Algebra	Images	Flow	Summary
00	●○○○○	0000000	000	00000	000	00
Outlin	e					

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

1 Topics

- 2 Signal Processing
- 3 LPC
- 4 Linear Algebra
- 5 Image Processing
- 6 Optical Flow
- 7 Summary

Topics	Signal Processing	LPC	Linear Algebra	Images	Flow	Summary
00	○●000	0000000	000	00000	000	00
DTFT						

$$X(\omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$
$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\omega)e^{j\omega n}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Topics	Signal Processing	LPC	Linear Algebra	Images	Flow	Summary
00		0000000	000	00000	000	00
Freque	ency Respons	se				

$$Y(\omega) = H(\omega)X(\omega)$$
$$y[n] = h[n] * x[n]$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●

Topics	Signal Processing	LPC	Linear Algebra	Images	Flow	Summary
00	○○○●○	0000000	000	00000	000	00
Z Trar	nsform					

$$\sum_{m=0}^{M-1} b_m x[n-m] = \sum_{k=0}^{N-1} a_k y[n-k]$$

$$H(z) = \frac{\sum_{m=0}^{M-1} b_m z^{-m}}{\sum_{k=0}^{M-1} a_k z^{-k}}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Topics	Signal Processing	LPC	Linear Algebra	Images	Flow	Summary
00	○000●	0000000	000	00000	000	00
Freque	ency Respons	e				

$$H(\omega) = H(z = e^{j\omega})$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Topics	Signal Processing	LPC	Linear Algebra	Images	Flow	Summary
00		●000000	000	00000	000	00
Outli	ne					

2 Signal Processing

- 4 Linear Algebra
- 5 Image Processing
- 6 Optical Flow

- ▲ ロ ト ▲ 国 ト ▲ 国 ト ▲ 国 ト クタマ

Topics	Signal Processing	LPC	Linear Algebra	Images	Flow	Summary
00		○●00000	000	00000	000	00
All-Pol	e Filter					

$$H(z) = \frac{1}{1 - \sum_{k=1}^{N} a_k z^{-k}}$$
$$= \frac{1}{\prod_{k=1}^{N} (1 - p_k z^{-1})}$$
$$= \sum_{k=1}^{N} \frac{C_k}{1 - p_k z^{-1}}$$

$$h[n] = \sum_{k=1}^{N} C_k p_k^n u[n]$$

(ロ) (型) (主) (主) (三) のへで

 Topics
 Signal Processing
 LPC
 Linear Algebra
 Images
 Flow
 Summary

 Cool
 Cool
 Cool
 Cool
 Cool
 Cool
 Cool
 Cool

 Linear Predictive Synthesis Filter
 Cool
 Cool
 Cool
 Cool
 Cool
 Cool

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

LPC Linear Algebra 0000000

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Topics
ooSignal Processing
oocooLPC
ocooLinear Algebra
ocoImages
ocooFlow
ocoSummary
ocoFinding the Linear Predictive Coefficients

Formulate the problem like this: we want to find a_k in order to minimize:

$$\mathcal{E} = \sum_{n=-\infty}^{\infty} e^2[n] = \sum_{n=-\infty}^{\infty} \left(s[n] - \sum_{m=1}^{p} a_m s[n-m] \right)^2$$

If we set $d\mathcal{E}/da_k = 0$, we get

$$0 = \sum_{n=-\infty}^{\infty} \left(s[n] - \sum_{m=1}^{p} a_m s[n-m] \right) s[n-k] = \sum_{n=-\infty}^{\infty} e[n] s[n-k]$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

which we sometimes write as $e[n] \perp s[n-k]$

 Topics
 Signal Processing
 LPC
 Linear Algebra
 Images
 Flow
 Summary

 00
 00000
 000
 000
 000
 000
 000
 000

In order to write the solution more easily, let's define something called the "autocorrelation," R[m]:

$$R[m] = \sum_{n=-\infty}^{\infty} s[n]s[n-m]$$

In terms of the autocorrelation, the orthogonality equations are

$$0 = R[k] - \sum_{m=1}^{p} a_m R[k-m] \quad \forall \ 1 \le k \le p$$

which can be re-arranged as

$$R[k] = \sum_{m=1}^{p} a_m R[k-m] \quad \forall \ 1 \le k \le p$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Topics	Signal Processing	LPC	Linear Algebra	Images	Flow	Summary
00		000000	000	00000	000	00
Matric	es					

Since we have p linear equations in p unknowns, let's create matrices:

$$\vec{\gamma} = \begin{bmatrix} R[1] \\ R[2] \\ \vdots \\ R[p] \end{bmatrix}, \quad R = \begin{bmatrix} R[0] & R[1] & \cdots & R[p-1] \\ R[1] & R[0] & \cdots & R[p-2] \\ \vdots & \vdots & \ddots & \vdots \\ R[p-1] & R[p-2] & \cdots & R[0] \end{bmatrix}$$

Then the normal equations become

$$\vec{\gamma} = R\vec{a}$$

and their solution is

$$\vec{a} = R^{-1}\vec{\gamma}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Topics	Signal Processing	LPC	Linear Algebra	Images	Flow	Summary
00		0000000	●○○	00000	000	00
Outlin	le					

1 Topics

2 Signal Processing

3 LPC

- 4 Linear Algebra
- 5 Image Processing
- 6 Optical Flow

Topics	Signal Processing	LPC	Linear Algebra	Images	Flow	Summary		
00		0000000	○●○	00000	000	00		
Linear	Algebra Re	Linear Algebra Review						

- A linear transform, *A*, maps vectors in space \vec{x} to vectors in space \vec{y} .
- The determinant, |A|, tells you how the volume of the unit sphere is scaled by the linear transform.
- Every $D \times D$ linear transform has D eigenvalues, which are the roots of the equation $|A \lambda I| = 0$.
- Left and right eigenvectors of a matrix are either orthogonal $(\vec{u}_i^T \vec{v}_j = 0)$ or share the same eigenvalue $(\kappa_i = \lambda_j)$.
- For a symmetric matrix, the left and right eigenvectors are the same. If the eigenvalues are distinct and real, then:

$$A = V \Lambda V^T, \quad \Lambda = V^T A V, \quad V V^T = V^T V = I$$

Topics	Signal Processing	LPC	Linear Algebra	Images	Flow	Summary
00		0000000	○O●	00000	000	00
Pseudo-Inverse						

If A is a tall thin matrix, then there is usually no vector \vec{v} that solves $\vec{b} = A\vec{v}$, but $\vec{v} = A^{\dagger}\vec{b}$ is the vector that comes closest, in the sense that

$$A^{\dagger}\vec{b} = \operatorname{argmin}_{\vec{v}} \|\vec{b} - A\vec{v}\|^2$$

If we differentiate the norm, and set the derivative to zero, we get

$$A^{\dagger} = (A^{T}A)^{-1}A^{T}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Topics	Signal Processing	LPC	Linear Algebra	Images	Flow	Summary
				00000		
Outli	no					

1 Topics

2 Signal Processing

3 LPC

- 4 Linear Algebra
- 5 Image Processing
- 6 Optical Flow

Topics Signal Processing LPC Linear Algebra Images Flow Summary What is a Multidimensional Signal?

A multidimensional signal is one that can be indexed in many directions. For example, a typical video that you would play on your laptop is a 4-dimensional signal, x[k, t, r, c]:

- k indexes color (k = 0 for red, k = 1 for green, k = 2 for blue)
- t is the frame index
- r is the row index
- c is the column index

If there are 3 colors, 30 frames/second, 480 rows and 640 columns, with one byte per pixel, then that's $3 \times 30 \times 480 \times 640 = 27684000$ bytes/sec.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Topics Signal Processing LPC Linear Algebra Images Flow Summary Multidimensional Convolution

Any linear, shift-invariant system can be implemented as a convolution. 2D convolution is defined as

$$y[n_1, n_2] = x[n_1, n_2] * h[n_1, n_2]$$

= $\sum_{m_1 = -\infty}^{\infty} \sum_{m_2 = -\infty}^{\infty} x[m_1, m_2]h[n_1 - m_1, n_2 - m_2]$

The Fourier transform of convoluton is multiplication:

$$y[\vec{n}] = x[\vec{n}] * h[\vec{n}] \Leftrightarrow Y(\vec{\omega}) = H(\vec{\omega})X(\vec{\omega})$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Topics	Signal Processing	LPC	Linear Algebra	lmages	Flow	Summary
00		0000000	000	○○○●○	000	00
Separa	ble Filters					

A filter $h[n_1, n_2]$ is called "separable" if it can be written as

$$h[n_1, n_2] = h_1[n_1]h_2[n_2]$$

If a filter is separable, then the computational cost of convolution can be reduced by using separable convolution:

$$x[n_1, n_2] * h[n_1, n_2] = h_1[n_1] *_1 (h_2[n_2] *_2 x[n_1, n_2])$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Topics	Signal Processing	LPC	Linear Algebra	Images	Flow	Summary
00		0000000	000	○000●	000	00
Examp	le: Image gr	adient				

For example, we can compute image gradient using the filter

$$h[n] = 0.5\delta[n+1] - 0.5\delta[n-1]$$

then

$$\frac{\partial f}{\partial n_1} \approx h[n_1] *_1 f[n_1, n_2]$$
$$\frac{\partial f}{\partial n_2} \approx h[n_2] *_2 f[n_1, n_2]$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Topics	Signal Processing	LPC	Linear Algebra	Images	Flow	Summary
00		0000000	000	00000	●○○	00
Outlin	ne					

1 Topics

2 Signal Processing

3 LPC

- 4 Linear Algebra
- 5 Image Processing
- 6 Optical Flow

Topics	Signal Processing	LPC	Linear Algebra	Images	Flow	Summary
00		0000000	000	00000	○●○	00
Optica	I Flow					

Definition: **optical flow** is the vector field $\vec{v}(t, r, c)$ specifying the current apparent velocity of the pixel at position (r, c). It depends on motion of (1) the object observed, and (2) the observer. Then the optical flow equation is:

$$-\frac{\partial f}{\partial t} = (\nabla f)^T \vec{v}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 Topics
 Signal Processing
 LPC
 Linear Algebra
 Images
 Flow
 Summary

 OO
 OO
 OO
 OO
 OO
 OO
 OO
 OO

The Lucas-Kanade algorithm solves the equation

$$\vec{b} = A\vec{v}$$

where

$$\vec{b} = -\begin{bmatrix} \frac{\partial f[t,r,c]}{\partial t} \\ \vdots \\ \frac{\partial f[t,r+H-1,c+W-1]}{\partial t} \end{bmatrix}, \quad \vec{v} = \begin{bmatrix} v_c[t,r,c] \\ v_r[t,r,c] \end{bmatrix}$$
$$A = \begin{bmatrix} \frac{\partial f[t,r,c]}{\partial c} & \frac{\partial f[t,r,c]}{\partial r} \\ \vdots \\ \frac{\partial f[t,r+H-1,c+W-1]}{\partial c} & \frac{\partial f[t,r+H-1,c+W-1]}{\partial r} \end{bmatrix}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Topics	Signal Processing	LPC	Linear Algebra	Images	Flow	Summary
00		0000000	000	00000	000	●○
Outli	ne					

1 Topics

2 Signal Processing

3 LPC

- 4 Linear Algebra
- 5 Image Processing
- 6 Optical Flow

Topics	Signal Processing	LPC	Linear Algebra	Images	Flow	Summary
00		0000000	000	00000	000	○●
Summ	arv					

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- HW1: Signal Processing Review
- MP1: LPC
- HW2: Linear Algebra
- MP2: Image Processing & Optical Flow