
Gradient Flow Lucas-Kanade Pseudo-Inverse Summary

Lecture 6: Optical Flow

Mark Hasegawa-Johnson

ECE 417: Multimedia Signal Processing, Fall 2021

Gradient Flow Lucas-Kanade Pseudo-Inverse Summary

1 Image Gradient

2 Optical Flow

3 The Lucas-Kanade Algorithm

4 Pseudo-Inverse

5 Summary

Gradient Flow Lucas-Kanade Pseudo-Inverse Summary

Outline

1 Image Gradient

2 Optical Flow

3 The Lucas-Kanade Algorithm

4 Pseudo-Inverse

5 Summary

Gradient Flow Lucas-Kanade Pseudo-Inverse Summary

Image gradient

The image gradient is a way of characterizing the distribution of
light and dark pixels in an image. Suppose the image intensity is
f (t, r , c). The image gradient is:

∇f ==

[
∂f (t,r ,c)

∂c
∂f (t,r ,c)

∂r

]

Gradient Flow Lucas-Kanade Pseudo-Inverse Summary

Image gradient

CC-BY 2.5, Gufosawa, 2021

Gradient Flow Lucas-Kanade Pseudo-Inverse Summary

Image gradient

Public domain image, Njw00, 2010

Gradient Flow Lucas-Kanade Pseudo-Inverse Summary

How do you calculate the image gradient?

Basically, use one of the standard numerical estimates of a
derivative. For example, the central-difference operator:

∇f =

[
∂f (t,r ,c)

∂c
∂f (t,r ,c)

∂r

]
=

[
f [t,r ,c+1]−f [t,r ,c−1]

2
f [t,r+1,c]−f [t,r−1,c]

2

]

Wikipedia has a good listing of other methods you can use.

https://en.wikipedia.org/wiki/Image_derivatives

Gradient Flow Lucas-Kanade Pseudo-Inverse Summary

Outline

1 Image Gradient

2 Optical Flow

3 The Lucas-Kanade Algorithm

4 Pseudo-Inverse

5 Summary

Gradient Flow Lucas-Kanade Pseudo-Inverse Summary

Optical Flow

Definition: optical flow is the vector field ~v(t, r , c) specifying the
current apparent velocity of the pixel at position (r , c). It depends
on motion of (1) the object observed, and (2) the observer.

CC-BY 2.5, Huston SJ, Krapp HG, 2008 Visuomotor Transformation in the Fly Gaze Stabilization System. PLoS

Biol 6(7): e173. doi:10.1371/journal.pbio.006017

Gradient Flow Lucas-Kanade Pseudo-Inverse Summary

Optical Flow

Definition: optical flow is the vector field ~v(t, r , c) specifying the
current apparent velocity of the pixel at position (r , c). It depends
on motion of (1) the object observed, and (2) the observer.

Pengcheng Han et. al. ”An Object Detection Method Using Wavelet Optical Flow and Hybrid Linear-Nonlinear

Classifier”, Mathematical Problems in Engineering doi:10.1155/2013/96541

Gradient Flow Lucas-Kanade Pseudo-Inverse Summary

Optical Flow

For example, you can use it to track a user-specified rectangle in
the ultrasound video of a tendon.

CC-BY 4.0 Chuang B, Hsu J, Kuo L, Jou I, Su F, Sun Y (2017). ”Tendon-motion tracking in an ultrasound image

sequence using optical-flow-based block matching”. BioMedical Engineering OnLine

Gradient Flow Lucas-Kanade Pseudo-Inverse Summary

How to calculate optical flow

General idea:

Treat the image as a function of continuous time and space,
f (t, r , c).

If the image intensity is changing, as a function of time, then
try to explain it by moving pixels around.

Gradient Flow Lucas-Kanade Pseudo-Inverse Summary

Calculating optical flow

More formally, let’s treat local variation of f (t, r , c) using a
first-order Taylor series:

f (t + ∆t, r + ∆r , c + ∆c) ≈ f (t, r , c) + ∆t
∂f

∂t
+ ∆r

∂f

∂r
+ ∆c

∂f

∂c

Hypothesize that all intensity variations are caused by pixels
moving around. Then

f (t + ∆t, r + ∆r , c + ∆c)− f (t, r , c) = 0

Gradient Flow Lucas-Kanade Pseudo-Inverse Summary

Calculating optical flow

0 = f (t + ∆t, r + ∆r , c + ∆c)− f (t, r , c)

≈ ∆t
∂f

∂t
+ ∆r

∂f

∂r
+ ∆c

∂f

∂c

Gradient Flow Lucas-Kanade Pseudo-Inverse Summary

Calculating optical flow

0 ≈ ∆t
∂f

∂t
+ ∆r

∂f

∂r
+ ∆c

∂f

∂c

Dividing through by ∆t, and taking the limit as ∆t → 0, we get

0 ≈ ∂f

∂t
+

(
∂r

∂t

)
∂f

∂r
+

(
∂c

∂t

)
∂f

∂c

Gradient Flow Lucas-Kanade Pseudo-Inverse Summary

Calculating optical flow

Re-arranging gives us the optical flow equation:

−∂f

∂t
≈
(
∂r

∂t

)
∂f

∂r
+

(
∂c

∂t

)
∂f

∂c

Gradient Flow Lucas-Kanade Pseudo-Inverse Summary

How to calculate optical flow

Define the optical flow vector, ~v(t, r , c), and image gradient,
∇f (t, r , c):

~v =

[
∂c
∂t
∂r
∂t

]
, ∇f =

[
∂f
∂c
∂f
∂r

]
Then the optical flow equation is:

−∂f

∂t
= (∇f)T~v

Gradient Flow Lucas-Kanade Pseudo-Inverse Summary

Outline

1 Image Gradient

2 Optical Flow

3 The Lucas-Kanade Algorithm

4 Pseudo-Inverse

5 Summary

Gradient Flow Lucas-Kanade Pseudo-Inverse Summary

How to calculate optical flow

So we have this optical flow equation:

−∂f

∂t
= (∇f)T~v

Assume that we can calculate ∂f /∂t and ∇f , using standard
image gradient methods. Now we just need to find ~v . But
~v = [vr , vc]T is a vector of two unknowns, so the equation above is
one equation in two unknowns!

Gradient Flow Lucas-Kanade Pseudo-Inverse Summary

How to calculate optical flow

The solution is to assume that a small block of pixels all move
together:

CC-SA 4.0 by German iris, 2017

Gradient Flow Lucas-Kanade Pseudo-Inverse Summary

The Lucas-Kanade Algorithm

The Lucas-Kanade Algorithm replaces this equation

−∂f

∂t
= (∇f)T~v

with this equation:

−


∂f [t,r−W ,c−W]

∂t
...

∂f [t,r+W ,c+W]
∂t

 =


∂f [t,r−W ,c−W]

∂c
∂f [t,r−W ,c−W]

∂r
...

∂f [t,r+W ,c+W]
∂c

∂f [t,r+W ,c+W]
∂r

[vc
vr

]

so that we are averaging over a block of size (2W + 1)× (2W + 1)
pixels.

Gradient Flow Lucas-Kanade Pseudo-Inverse Summary

The Lucas-Kanade Algorithm

The Lucas-Kanade algorithm solves the equation

~b = A~v

where

~b = −


∂f [t,r−W ,c−W]

∂t
...

∂f [t,r+W ,c+W]
∂t

 , A =


∂f [t,r−W ,c−W]

∂c
∂f [t,r−W ,c−W]

∂r
...

∂f [t,r+W ,c+W]
∂c

∂f [t,r+W ,c+W]
∂r


~v =

[
vc [t, r , c]
vr [t, r , c]

]

Gradient Flow Lucas-Kanade Pseudo-Inverse Summary

The Lucas-Kanade Algorithm

The Lucas-Kanade algorithm solves the equation

~b = A~v

. . . but now A is a matrix of size (2W + 1)× 2, so it’s still not
invertible! How do we solve that?

Gradient Flow Lucas-Kanade Pseudo-Inverse Summary

Outline

1 Image Gradient

2 Optical Flow

3 The Lucas-Kanade Algorithm

4 Pseudo-Inverse

5 Summary

Gradient Flow Lucas-Kanade Pseudo-Inverse Summary

Pseudo-Inverse

The pseudo-inverse, A†, of any matrix A, is a matrix that acts like
A−1 in many ways, but it doesn’t require A to be square. Here are
some of its properties:

AA†A = A

A†AA† = A

Gradient Flow Lucas-Kanade Pseudo-Inverse Summary

Pseudo-Inverse

Of particular interest to us, the vector ~v = A†~b “pseudo-solves”
the equation ~b = A~v . By pseudo-solve, we mean that

If A is a short fat matrix, then there are an infinite number of
different vectors ~v that solve ~b = A~v . ~v = A†~b is one of
those; specifically, it’s the one that minimizes ‖~v‖2.

If A is a tall thin matrix, then there is usually no vector ~v that
solves ~b = A~v , but ~v = A†~b is the vector that comes closest,
in the sense that

A†~b = argmin~v‖~b − A~v‖2

Gradient Flow Lucas-Kanade Pseudo-Inverse Summary

Solving for the Pseudo-Inverse

Let’s use this equation:

v∗ = A†~b = argminv‖~b − A~v‖2

to solve for the pseudo-inverse.

Gradient Flow Lucas-Kanade Pseudo-Inverse Summary

Solving for the Pseudo-Inverse

A†~b = argminv‖~b − A~v‖2

= argminv

(
~b − A~v

)T (
~b − A~v

)
= argminv

(
~bT~b − 2~vTAT~b + ~vTATA~v

)

Gradient Flow Lucas-Kanade Pseudo-Inverse Summary

Solving for the Pseudo-Inverse

A†~b = argminv

(
~bT~b − 2~vTAT~b + ~vTATA~v

)
If we differentiate the quantity in parentheses, and set the
derivative to zero, we get

~0 = −2AT~b + 2ATA~v

Assume that the columns of A are linearly independent; then ATA
is invertible, and so the solution is

~v = (ATA)−1AT~b

Gradient Flow Lucas-Kanade Pseudo-Inverse Summary

Outline

1 Image Gradient

2 Optical Flow

3 The Lucas-Kanade Algorithm

4 Pseudo-Inverse

5 Summary

Gradient Flow Lucas-Kanade Pseudo-Inverse Summary

Summary: Optical Flow

Optical flow is the vector field, ~v(t, r , c), as a function of pixel
position and frame number.

It is computed by assuming that the only changes to an image
are the ones caused by motion, so that

f (t + ∆t, r + ∆r , c + ∆c) = f (t, r , c)

From that assumption, we get the optical flow equation:

−∂f

∂t
= ~vT∇f

Gradient Flow Lucas-Kanade Pseudo-Inverse Summary

The Lucas-Kanade Algorithm

Lucas-Kanade assumes that there is a (2W + 1)× (2W + 1) block
of pixels that all move together, so that ~b = A~v , where

~b = −


∂f [t,r−W ,c−W]

∂t
...

∂f [t,r+W ,c+W]
∂t

 , A =


∂f [t,r−W ,c−W]

∂c
∂f [t,r−W ,c−W]

∂r
...

∂f [t,r+W ,c+W]
∂c

∂f [t,r+W ,c+W]
∂r


~v =

[
vc [t, r , c]
vr [t, r , c]

]

Gradient Flow Lucas-Kanade Pseudo-Inverse Summary

Pseudo-Inverse

The Lucas-Kanade equation cannot be solved exactly, because it is
(2W + 1) equations in only two unknowns. But we can find the
minimum-squared error solution, which is

v∗[t, r , c] = A†~b = (ATA)−1AT~b

	Image Gradient
	Optical Flow
	The Lucas-Kanade Algorithm
	Pseudo-Inverse
	Summary

