Linear Algebra	Eigenvectors	Symmetric	Examples	Summary

Lecture 4: Review of Linear Algebra

Mark Hasegawa-Johnson

ECE 417: Multimedia Signal Processing, Fall 2021

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Linear Algebra	Eigenvectors	Symmetric	Examples	Summary

- 2 Left and Right Eigenvectors
- 3 Eigenvectors of symmetric matrices

Linear Algebra	Eigenvectors	Symmetric	Examples	Summary
●○○○○○○○	00000	0000000	000	00
Outline				

- 2 Left and Right Eigenvectors
- 3 Eigenvectors of symmetric matrices

4 Examples

Linear Algebra	Eigenvectors	Symmetric	Examples	Summary
⊙●0000000	00000	00000000	000	00

A linear transform $\vec{y} = A\vec{x}$ maps vector space \vec{x} onto vector space \vec{y} . For example: the matrix $A = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}$ maps the vectors $\vec{x_0}, \vec{x_1}, \vec{x_2}, \vec{x_3} =$

$$\left[\begin{array}{c}1\\0\end{array}\right], \left[\begin{array}{c}\frac{1}{\sqrt{2}}\\\frac{1}{\sqrt{2}}\end{array}\right], \left[\begin{array}{c}0\\1\end{array}\right], \left[\begin{array}{c}-\frac{1}{\sqrt{2}}\\\frac{1}{\sqrt{2}}\end{array}\right]$$

to the vectors $ec{y_0}, ec{y_1}, ec{y_2}, ec{y_3} =$

$$\left[\begin{array}{c}1\\0\end{array}\right], \left[\begin{array}{c}\sqrt{2}\\\sqrt{2}\end{array}\right], \left[\begin{array}{c}1\\2\end{array}\right], \left[\begin{array}{c}0\\\sqrt{2}\end{array}\right]$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Linear Algebra	Eigenvectors	Symmetric	Examples	Summary
00000000	00000	00000000	000	00

A linear transform $\vec{y} = A\vec{x}$ maps vector space \vec{x} onto vector space \vec{y} . The absolute value of the determinant of A tells you how much the area of a unit circle is changed under the transformation. For example, if $A = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}$, then the unit circle in \vec{x} (which has an area of π) is mapped to an ellipse with an area that is abs(|A|) = 2 times larger, i.e., i.e., $\pi \operatorname{abs}(|A|) = 2\pi.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ → □ ◆ ⊙へ⊙

Linear Algebra	Eigenvectors	Symmetric	Examples	Summary
	00000	0000000	000	00

For a D-dimensional square matrix, there may be up to D different directions $\vec{x} = \vec{v}_d$ such that, for some scalar λ_d , $A\vec{v}_d = \lambda_d\vec{v}_d$. For example, if $A = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}$, then the eigenvectors are

$$\vec{v}_0 = \begin{bmatrix} 1\\ 0 \end{bmatrix}, \quad \vec{v}_1 = \begin{bmatrix} \frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{2}} \end{bmatrix},$$

and the eigenvalues are $\lambda_0 = 1$, $\lambda_1 = 2$. Those vectors are red and extra-thick, in the figure to the left. Notice that one of the vectors gets scaled by $\lambda_0 = 1$, but the other gets scaled by $\lambda_1 = 2$.

- 日本 本語 本 本 田 本 王 本 田 本

Linear Algebra	Eigenvectors	Symmetric	Examples	Summary
00000000				

An eigenvector is a direction, not just a vector. That means that if you multiply an eigenvector by any scalar, you get the same eigenvector: if $A\vec{v_d} = \lambda_d\vec{v_d}$, then it's also true that $cA\vec{v_d} = c\lambda_d\vec{v_d}$ for any scalar c. For example: the following are the same eigenvector as $\vec{v_1}$

$$\sqrt{2}\vec{v}_1 = \begin{bmatrix} 1\\1 \end{bmatrix}, \quad -\vec{v}_1 = \begin{bmatrix} -\frac{1}{\sqrt{2}}\\-\frac{1}{\sqrt{2}} \end{bmatrix}$$

Since scale and sign don't matter, by convention, we normalize so that an eigenvector is always unit-length $(\|\vec{v}_d\| = 1)$ and the first nonzero element is non-negative $(v_{d0} > 0)$.

・ロット (日) ・ (日) ・ (日) ・ (日)

Linear Algebra	Eigenvectors	Symmetric	Examples	Summary
○○○○○●○○○	00000	00000000	000	00

Eigenvalues: Before you find the eigenvectors, you should first find the eigenvalues. You can do that using this fact:

$$\begin{aligned} A\vec{v}_d &= \lambda_d \vec{v}_d \\ A\vec{v}_d &= \lambda_d I \vec{v}_d \\ A\vec{v}_d - \lambda_d I \vec{v}_d &= \vec{0} \\ (A - \lambda_d I) \vec{v}_d &= \vec{0} \end{aligned}$$

That means that when you use the linear transform $(A - \lambda_d I)$ to transform the unit circle, the result has an area of $|A - \lambda I| = 0$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Linear Algebra	Eigenvectors	Symmetric	Examples	Summary
000000000				

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- The determinant $|A \lambda I|$ is a D^{th} -order polynomial in λ .
- By the fundamental theorem of algebra, the equation

$$|A - \lambda I| = 0$$

has exactly D roots (counting repeated roots and complex roots).

• Therefore, any square matrix has exactly *D* eigenvalues (counting repeated eigenvalues, and complex eigenvalues.

Linear Algebra Eigenvectors Symmetric Examples Summary oc

There are not always D eigenvectors

Not every square matrix has D eigenvectors. Some of the most common exceptions are:

- Repeated eigenvalues: if two of the roots of the polynomial are the same (λ_j = λ_i), then that means there is a two-dimensional subspace, v, such that Av = λ_iv. You can arbitrarily choose any two orthogonal vectors from this subspace to be the eigenvectors.
- **Complex eigenvalues** correspond to complex eigenvalues. For example, the matrix

$${f A}=\left[egin{array}{cc} 0&1\-1&0\end{array}
ight]$$

has the eigenvalues $\lambda=\pm j,$ and the corresponding eigenvectors

$$\vec{v}_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\ j \end{bmatrix}, \quad \vec{v}_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\ -j \end{bmatrix}$$

Complex aigenvalues le vectors require a little bit of extra

Linear Algebra	Eigenvectors	Symmetric	Examples	Summary
000000000	●0000	0000000	000	00
Outline				

- 1 Review: Linear Algebra
- 2 Left and Right Eigenvectors
- 3 Eigenvectors of symmetric matrices
- 4 Examples

Linear Algebra Eigenvectors Symmetric Examples OOO

The eigenvectors of a $D \times D$ square matrix, A, are the vectors \vec{v} such that

$$A\vec{v} = \lambda\vec{v} \tag{1}$$

The scalar, λ , is called the eigenvalue. It's only possible for Eq. (1) to have a solution if

$$|A - \lambda I| = 0 \tag{2}$$

Left and right	eigenvectors			
Linear Algebra	Eigenvectors	Symmetric	Examples	Summary
00000000		00000000	000	00

We've been working with right eigenvectors and right eigenvalues:

$$A\vec{v}_d = \lambda_d \vec{v}_d$$

There may also be left eigenvectors, which are row vectors \vec{u}_d and corresponding left eigenvalues κ_d :

$$\vec{u}_d^T A = \kappa_d \vec{u}_d^T$$

You can do an interesting thing if you multiply the matrix by its eigenvectors both before and after:

$$\vec{u}_i^T(A\vec{v}_j) = \vec{u}_i^T(\lambda_j \vec{v}_j) = \lambda_j \vec{u}_i^T \vec{v}_j$$

. . . but. . .

$$(\vec{u}_i^T A) \vec{v}_j = (\kappa_i \vec{u}_i^T) \vec{v}_j = \kappa_i \vec{u}_i^T \vec{v}_j$$

There are only two ways that both of these things can be true. Either

$$\kappa_i = \lambda_j$$
 or $\vec{u}_i^T \vec{v}_j = 0$

There are only two ways that both of these things can be true. Either

$$\kappa_i = \lambda_j$$
 or $\vec{u}_i^T \vec{v}_j = 0$

Remember that eigenvalues solve $|A - \lambda_d I| = 0$. In almost all cases, the solutions are all distinct (A has distinct eigenvalues), i.e., $\lambda_i \neq \lambda_j$ for $i \neq j$. That means there is **at most one** λ_i that can equal each κ_i :

$$\begin{cases} i \neq j & \vec{u}_i^T \vec{v}_j = 0\\ i = j & \kappa_i = \lambda_i \end{cases}$$

Linear Algebra	Eigenvectors	Symmetric	Examples	Summary
000000000	00000	●○○○○○○○	000	00
Outline				

- 1 Review: Linear Algebra
- 2 Left and Right Eigenvectors
- 3 Eigenvectors of symmetric matrices
- 4 Examples

If A is symmetric $(A = A^T)$, then the left and right eigenvectors and eigenvalues are the same, because

$$\lambda_i \vec{u}_i^T = \vec{u}_i^T A = (A^T \vec{u}_i)^T = (A \vec{u}_i)^T$$

... and that last term is equal to $\lambda_i \vec{u}_i^T$ if and only if $\vec{u}_i = \vec{v}_i$.

Let's combine the following facts:

• $\vec{u}_i^T \vec{v}_j = 0$ for $i \neq j$ — any square matrix with distinct eigenvalues

•
$$\vec{u}_i = \vec{v}_i$$
 — symmetric matrix

• $\vec{v}_i^T \vec{v}_i = 1$ — standard normalization of eigenvectors for any matrix (this is what $\|\vec{v}_i\| = 1$ means).

Putting it all together, we get that

$$\vec{v}_i^T \vec{v}_j = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

So if *A* is symmetric with distinct eigenvalues, then its eigenvectors are orthonormal:

$$ec{v}_i^T ec{v}_j = \begin{cases} 1 & i=j \\ 0 & i \neq j \end{cases}$$

We can write this as

$$V^T V = I$$

where

$$V = [\vec{v}_0, \ldots, \vec{v}_{D-1}]$$

The eigenvector matrix is orthonormal

$$V^T V = I$$

... and it also turns out that

$$VV^T = I$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Proof: $VV^T = VIV^T = V(V^TV)V^T = (VV^T)^2$, but the only matrix that satisfies $VV^T = (VV^T)^2$ is $VV^T = I$.

So now, suppose A is symmetric:

$$\vec{v}_i^T A \vec{v}_j = \vec{v}_i^T (\lambda_j \vec{v}_j) = \lambda_j \vec{v}_i^T \vec{v}_j = \begin{cases} \lambda_j, & i = j \\ 0, & i \neq j \end{cases}$$

In other words, if a symmetric matrix has D eigenvectors with distinct eigenvalues, then its eigenvectors orthogonalize A:

$$V^{T}AV = \Lambda$$
$$\Lambda = \begin{bmatrix} \lambda_{0} & 0 & 0\\ 0 & \dots & 0\\ 0 & 0 & \lambda_{D-1} \end{bmatrix}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

One more thing. Notice that

$$A = VV^T A VV^T = V \Lambda V^T$$

The last term is

$$\begin{bmatrix} \vec{v}_0, \dots, \vec{v}_{D-1} \end{bmatrix} \begin{bmatrix} \lambda_0 & 0 & 0 \\ 0 & \dots & 0 \\ 0 & 0 & \lambda_{D-1} \end{bmatrix} \begin{bmatrix} \vec{v}_0^T \\ \vdots \\ \vec{v}_{D-1}^T \end{bmatrix} = \sum_{d=0}^{D-1} \lambda_d \vec{v}_d \vec{v}_d^T$$

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

If A is symmetric with D eigenvectors, and D distinct eigenvalues, then

 $A = V \wedge V^{T}$ $\wedge = V^{T} A V$ $V V^{T} = V^{T} V = I$

Linear Algebra	Eigenvectors	Symmetric	Examples	Summary
000000000	00000	00000000	●○○	00
Outline				

- 1 Review: Linear Algebra
- 2 Left and Right Eigenvectors
- 3 Eigenvectors of symmetric matrices

Pick an arbitrary 2 × 2 symmetric matrix. Find its eigenvalues and eigenvectors. Show that $\Lambda = V^T A V$ and $A = V \Lambda V^T$.

In-Lecture Jupyter Example Problem

Create a jupyter notebook. Pick an arbitrary 2×2 matrix. Plot a unit circle in the \vec{x} space, and show what happens to those vectors after transformation to the \vec{y} space. Calculate the determinant of the matrix, and its eigenvalues and eigenvectors. Show that $A\vec{v} = \lambda \vec{v}$.

Linear Algebra	Eigenvectors	Symmetric	Examples	Summary
000000000	00000	00000000	000	●○
Outline				

- 1 Review: Linear Algebra
- 2 Left and Right Eigenvectors
- 3 Eigenvectors of symmetric matrices

4 Examples

Linear Algebra	Eigenvectors	Symmetric	Examples	Summary
000000000	00000	0000000	000	○●
Summary				

- A linear transform, *A*, maps vectors in space \vec{x} to vectors in space \vec{y} .
- The determinant, |A|, tells you how the volume of the unit sphere is scaled by the linear transform.
- Every $D \times D$ linear transform has D eigenvalues, which are the roots of the equation $|A \lambda I| = 0$.
- Left and right eigenvectors of a matrix are either orthogonal $(\vec{u}_i^T \vec{v}_j = 0)$ or share the same eigenvalue $(\kappa_i = \lambda_j)$.
- For a symmetric matrix, the left and right eigenvectors are the same. If the eigenvalues are distinct and real, then:

$$A = V \Lambda V^{T}, \quad \Lambda = V^{T} A V, \quad V V^{T} = V^{T} V = I$$