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A linear transform ~y = A~x maps vector
space ~x onto vector space ~y . For example:

the matrix A =

[
1 1
0 2

]
maps the vectors

~x0, ~x1, ~x2, ~x3 =[
1
0

]
,

[
1√
2
1√
2

]
,

[
0
1

]
,

[
− 1√

2
1√
2

]

to the vectors ~y0, ~y1, ~y2, ~y3 =[
1
0

]
,

[ √
2√
2

]
,

[
1
2

]
,

[
0√
2

]
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A linear transform ~y = A~x maps vector
space ~x onto vector space ~y . The absolute
value of the determinant of A tells you how
much the area of a unit circle is changed
under the transformation.

For example, if A =

[
1 1
0 2

]
, then the

unit circle in ~x (which has an area of π) is
mapped to an ellipse with an area that is
abs(|A|) = 2 times larger, i.e., i.e.,
πabs(|A|) = 2π.
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For a D-dimensional square matrix, there
may be up to D different directions ~x = ~vd
such that, for some scalar λd , A~vd = λd~vd .

For example, if A =

[
1 1
0 2

]
, then the

eigenvectors are

~v0 =

[
1
0

]
, ~v1 =

[
1√
2
1√
2

]
,

and the eigenvalues are λ0 = 1, λ1 = 2.
Those vectors are red and extra-thick, in
the figure to the left. Notice that one of
the vectors gets scaled by λ0 = 1, but the
other gets scaled by λ1 = 2.
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An eigenvector is a direction, not just a
vector. That means that if you multiply an
eigenvector by any scalar, you get the same
eigenvector: if A~vd = λd~vd , then it’s also
true that cA~vd = cλd~vd for any scalar c .
For example: the following are the same
eigenvector as ~v1

√
2~v1 =

[
1
1

]
, − ~v1 =

[
− 1√

2

− 1√
2

]

Since scale and sign don’t matter, by
convention, we normalize so that an
eigenvector is always unit-length
(‖~vd‖ = 1) and the first nonzero element is
non-negative (vd0 > 0).
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Eigenvalues: Before you find the
eigenvectors, you should first find the
eigenvalues. You can do that using this
fact:

A~vd = λd~vd

A~vd = λd I~vd

A~vd − λd I~vd = ~0

(A− λd I )~vd = ~0

That means that when you use the linear
transform (A− λd I ) to transform the unit
circle, the result has an area of
|A− λI | = 0.



Linear Algebra Eigenvectors Symmetric Examples Summary

Example:

|A− λI | =

∣∣∣∣ 1− λ 1
0 2− λ

∣∣∣∣
= 2− 3λ+ λ2

which has roots at λ0 = 1, λ1 = 2
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There are always D eigenvalues

The determinant |A− λI | is a Dth-order polynomial in λ.

By the fundamental theorem of algebra, the equation

|A− λI | = 0

has exactly D roots (counting repeated roots and complex
roots).

Therefore, any square matrix has exactly D eigenvalues
(counting repeated eigenvalues, and complex eigenvalues.
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There are not always D eigenvectors

Not every square matrix has D eigenvectors. Some of the most
common exceptions are:

Repeated eigenvalues: if two of the roots of the polynomial
are the same (λj = λi ), then that means there is a
two-dimensional subspace, ~v , such that A~v = λi~v . You can
arbitrarily choose any two orthogonal vectors from this
subspace to be the eigenvectors.
Complex eigenvalues correspond to complex eigenvalues.
For example, the matrix

A =

[
0 1
−1 0

]
has the eigenvalues λ = ±j , and the corresponding
eigenvectors

~v1 =
1√
2

[
1
j

]
, ~v2 =

1√
2

[
1
−j

]
Complex eigenvalues & vectors require a little bit of extra
notation that we’ll mostly avoid dealing with.
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Review: Eigenvalues and eigenvectors

The eigenvectors of a D × D square matrix, A, are the vectors ~v
such that

A~v = λ~v (1)

The scalar, λ, is called the eigenvalue. It’s only possible for Eq. (1)
to have a solution if

|A− λI | = 0 (2)
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Left and right eigenvectors

We’ve been working with right eigenvectors and right eigenvalues:

A~vd = λd~vd

There may also be left eigenvectors, which are row vectors ~ud and
corresponding left eigenvalues κd :

~uTd A = κd~u
T
d
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Eigenvectors on both sides of the matrix

You can do an interesting thing if you multiply the matrix by its
eigenvectors both before and after:

~uTi (A~vj) = ~uTi (λj~vj) = λj~u
T
i ~vj

. . . but. . .
(~uTi A)~vj = (κi ~u

T
i )~vj = κi ~u

T
i ~vj

There are only two ways that both of these things can be true.
Either

κi = λj or ~uTi ~vj = 0
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Left and right eigenvectors must be paired!!

There are only two ways that both of these things can be true.
Either

κi = λj or ~uTi ~vj = 0

Remember that eigenvalues solve |A− λd I | = 0. In almost all
cases, the solutions are all distinct (A has distinct eigenvalues),
i.e., λi 6= λj for i 6= j . That means there is at most one λi that
can equal each κi : {

i 6= j ~uTi ~vj = 0

i = j κi = λi
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Symmetric matrices: left=right

If A is symmetric (A = AT ), then the left and right eigenvectors
and eigenvalues are the same, because

λi ~u
T
i = ~uTi A = (AT ~ui )

T = (A~ui )
T

. . . and that last term is equal to λi ~u
T
i if and only if ~ui = ~vi .



Linear Algebra Eigenvectors Symmetric Examples Summary

Symmetric matrices: eigenvectors are orthonormal

Let’s combine the following facts:

~uTi ~vj = 0 for i 6= j — any square matrix with distinct
eigenvalues

~ui = ~vi — symmetric matrix

~vTi ~vi = 1 — standard normalization of eigenvectors for any
matrix (this is what ‖~vi‖ = 1 means).

Putting it all together, we get that

~vTi ~vj =

{
1 i = j

0 i 6= j
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The eigenvector matrix

So if A is symmetric with distinct eigenvalues, then its eigenvectors
are orthonormal:

~vTi ~vj =

{
1 i = j

0 i 6= j

We can write this as
V TV = I

where
V = [~v0, . . . , ~vD−1]
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The eigenvector matrix is orthonormal

V TV = I

. . . and it also turns out that

VV T = I

Proof: VV T = VIV T = V (V TV )V T = (VV T )2, but the only
matrix that satisfies VV T = (VV T )2 is VV T = I .
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Eigenvectors orthogonalize a symmetric matrix

So now, suppose A is symmetric:

~vTi A~vj = ~vTi (λj~vj) = λj~v
T
i ~vj =

{
λj , i = j

0, i 6= j

In other words, if a symmetric matrix has D eigenvectors with
distinct eigenvalues, then its eigenvectors orthogonalize A:

V TAV = Λ

Λ =

 λ0 0 0
0 . . . 0
0 0 λD−1


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A symmetric matrix is the weighted sum of its eigenvectors:

One more thing. Notice that

A = VV TAVV T = VΛV T

The last term is

[~v0, . . . , ~vD−1]

 λ0 0 0
0 . . . 0
0 0 λD−1


 ~vT0

...
~vTD−1

 =
D−1∑
d=0

λd~vd~v
T
d



Linear Algebra Eigenvectors Symmetric Examples Summary

Summary: properties of symmetric matrices

If A is symmetric with D eigenvectors, and D distinct eigenvalues,
then

A = VΛV T

Λ = V TAV

VV T = V TV = I
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In-Lecture Written Example Problem

Pick an arbitrary 2× 2 symmetric matrix. Find its eigenvalues and
eigenvectors. Show that Λ = V TAV and A = VΛV T .
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In-Lecture Jupyter Example Problem

Create a jupyter notebook. Pick an arbitrary 2× 2 matrix. Plot a
unit circle in the ~x space, and show what happens to those vectors
after transformation to the ~y space. Calculate the determinant of
the matrix, and its eigenvalues and eigenvectors. Show that
A~v = λ~v .
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Summary

A linear transform, A, maps vectors in space ~x to vectors in
space ~y .

The determinant, |A|, tells you how the volume of the unit
sphere is scaled by the linear transform.

Every D × D linear transform has D eigenvalues, which are
the roots of the equation |A− λI | = 0.

Left and right eigenvectors of a matrix are either orthogonal
(~uTi ~vj = 0) or share the same eigenvalue (κi = λj).

For a symmetric matrix, the left and right eigenvectors are the
same. If the eigenvalues are distinct and real, then:

A = VΛV T , Λ = V TAV , VV T = V TV = I
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