Lecture 4: Review of Linear Algebra

Mark Hasegawa-Johnson

ECE 417: Multimedia Signal Processing, Fall 2021
(1) Review: Linear Algebra
(2) Left and Right Eigenvectors
(3) Eigenvectors of symmetric matrices
(4) Examples
(5) Summary

Outline

(1) Review: Linear Algebra

2 Left and Right Eigenvectors

(3) Eigenvectors of symmetric matrices

4 Examples
(5) Summary

A linear transform $\vec{y}=A \vec{x}$ maps vector space \vec{x} onto vector space \vec{y}. For example: the matrix $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 2\end{array}\right]$ maps the vectors $\vec{x}_{0}, \vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}=$

$$
\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right],\left[\begin{array}{c}
-\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right]
$$

to the vectors $\overrightarrow{y_{0}}, \overrightarrow{y_{1}}, \overrightarrow{y_{2}}, \overrightarrow{y_{3}}=$

$$
\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
\sqrt{2} \\
\sqrt{2}
\end{array}\right],\left[\begin{array}{l}
1 \\
2
\end{array}\right],\left[\begin{array}{c}
0 \\
\sqrt{2}
\end{array}\right]
$$

A linear transform $\vec{y}=A \vec{x}$ maps vector space \vec{x} onto vector space \vec{y}. The absolute value of the determinant of A tells you how much the area of a unit circle is changed under the transformation.
For example, if $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 2\end{array}\right]$, then the unit circle in \vec{x} (which has an area of π) is mapped to an ellipse with an area that is $\operatorname{abs}(|A|)=2$ times larger, i.e., i.e., $\pi \mathrm{abs}(|A|)=2 \pi$.

For a D-dimensional square matrix, there may be up to D different directions $\vec{x}=\vec{v}_{d}$ such that, for some scalar $\lambda_{d}, A \vec{v}_{d}=\lambda_{d} \vec{v}_{d}$. For example, if $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 2\end{array}\right]$, then the eigenvectors are

$$
\vec{v}_{0}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad \vec{v}_{1}=\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right]
$$

and the eigenvalues are $\lambda_{0}=1, \lambda_{1}=2$. Those vectors are red and extra-thick, in the figure to the left. Notice that one of the vectors gets scaled by $\lambda_{0}=1$, but the other gets scaled by $\lambda_{1}=2$.

An eigenvector is a direction, not just a vector. That means that if you multiply an eigenvector by any scalar, you get the same eigenvector: if $A \vec{v}_{d}=\lambda_{d} \vec{v}_{d}$, then it's also true that $c A \vec{v}_{d}=c \lambda_{d} \vec{v}_{d}$ for any scalar c. For example: the following are the same eigenvector as \vec{v}_{1}

$$
\sqrt{2} \vec{v}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad-\vec{v}_{1}=\left[\begin{array}{l}
-\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}}
\end{array}\right]
$$

Since scale and sign don't matter, by convention, we normalize so that an eigenvector is always unit-length
$\left(\left\|\vec{v}_{d}\right\|=1\right)$ and the first nonzero element is non-negative $\left(v_{d 0}>0\right)$.

Eigenvalues: Before you find the eigenvectors, you should first find the eigenvalues. You can do that using this fact:

$$
\begin{aligned}
A \vec{v}_{d} & =\lambda_{d} \vec{v}_{d} \\
A \vec{v}_{d} & =\lambda_{d} / \vec{v}_{d} \\
A \vec{v}_{d}-\lambda_{d} / \vec{v}_{d} & =\overrightarrow{0} \\
\left(A-\lambda_{d} I\right) \vec{v}_{d} & =\overrightarrow{0}
\end{aligned}
$$

That means that when you use the linear transform $\left(A-\lambda_{d} I\right)$ to transform the unit circle, the result has an area of $|A-\lambda I|=0$.

Example:

$$
\begin{aligned}
|A-\lambda I| & =\left|\begin{array}{cc}
1-\lambda & 1 \\
0 & 2-\lambda
\end{array}\right| \\
& =2-3 \lambda+\lambda^{2}
\end{aligned}
$$

which has roots at $\lambda_{0}=1, \lambda_{1}=2$

There are always D eigenvalues

- The determinant $|A-\lambda I|$ is a $D^{\text {th }}$-order polynomial in λ.
- By the fundamental theorem of algebra, the equation

$$
|A-\lambda I|=0
$$

has exactly D roots (counting repeated roots and complex roots).

- Therefore, any square matrix has exactly D eigenvalues (counting repeated eigenvalues, and complex eigenvalues.

There are not always D eigenvectors

Not every square matrix has D eigenvectors. Some of the most common exceptions are:

- Repeated eigenvalues: if two of the roots of the polynomial are the same $\left(\lambda_{j}=\lambda_{i}\right)$, then that means there is a two-dimensional subspace, \vec{v}, such that $A \vec{v}=\lambda_{i} \vec{v}$. You can arbitrarily choose any two orthogonal vectors from this subspace to be the eigenvectors.
- Complex eigenvalues correspond to complex eigenvalues. For example, the matrix

$$
A=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]
$$

has the eigenvalues $\lambda= \pm j$, and the corresponding eigenvectors

$$
\vec{v}_{1}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
j
\end{array}\right], \quad \vec{v}_{2}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
-j
\end{array}\right]
$$

Outline

(1) Review: Linear Algebra

(2) Left and Right Eigenvectors

3 Eigenvectors of symmetric matrices

4 Examples
(5) Summary

Review: Eigenvalues and eigenvectors

The eigenvectors of a $D \times D$ square matrix, A, are the vectors \vec{v} such that

$$
\begin{equation*}
A \vec{v}=\lambda \vec{v} \tag{1}
\end{equation*}
$$

The scalar, λ, is called the eigenvalue. It's only possible for Eq. (1) to have a solution if

$$
\begin{equation*}
|A-\lambda I|=0 \tag{2}
\end{equation*}
$$

Left and right eigenvectors

We've been working with right eigenvectors and right eigenvalues:

$$
A \vec{v}_{d}=\lambda_{d} \vec{v}_{d}
$$

There may also be left eigenvectors, which are row vectors \vec{u}_{d} and corresponding left eigenvalues κ_{d} :

$$
\vec{u}_{d}^{T} A=\kappa_{d} \vec{u}_{d}^{T}
$$

Eigenvectors on both sides of the matrix

You can do an interesting thing if you multiply the matrix by its eigenvectors both before and after:

$$
\vec{u}_{i}^{T}\left(A \vec{v}_{j}\right)=\vec{u}_{i}^{T}\left(\lambda_{j} \vec{v}_{j}\right)=\lambda_{j} \vec{u}_{i}^{T} \vec{v}_{j}
$$

... but. . .

$$
\left(\vec{u}_{i}^{T} A\right) \vec{v}_{j}=\left(\kappa_{i} \vec{u}_{i}^{T}\right) \vec{v}_{j}=\kappa_{i} \vec{u}_{i}^{T} \vec{v}_{j}
$$

There are only two ways that both of these things can be true. Either

$$
\kappa_{i}=\lambda_{j} \quad \text { or } \quad \vec{u}_{i}^{T} \vec{v}_{j}=0
$$

Left and right eigenvectors must be paired!!

There are only two ways that both of these things can be true. Either

$$
\kappa_{i}=\lambda_{j} \quad \text { or } \quad \vec{u}_{i}^{T} \vec{v}_{j}=0
$$

Remember that eigenvalues solve $\left|A-\lambda_{d} I\right|=0$. In almost all cases, the solutions are all distinct (A has distinct eigenvalues), i.e., $\lambda_{i} \neq \lambda_{j}$ for $i \neq j$. That means there is at most one λ_{i} that can equal each κ_{i} :

$$
\begin{cases}i \neq j & \vec{u}_{i}^{T} \vec{v}_{j}=0 \\ i=j & \kappa_{i}=\lambda_{i}\end{cases}
$$

Outline

(1) Review: Linear Algebra
 (2) Left and Right Eigenvectors

(3) Eigenvectors of symmetric matrices
(4) Examples
(5) Summary

Symmetric matrices: left=right

If A is symmetric $\left(A=A^{T}\right)$, then the left and right eigenvectors and eigenvalues are the same, because

$$
\lambda_{i} \vec{u}_{i}^{T}=\vec{u}_{i}^{T} A=\left(A^{T} \vec{u}_{i}\right)^{T}=\left(A \vec{u}_{i}\right)^{T}
$$

\ldots and that last term is equal to $\lambda_{i} \vec{u}_{i}^{T}$ if and only if $\vec{u}_{i}=\vec{v}_{i}$.

Symmetric matrices: eigenvectors are orthonormal

Let's combine the following facts:

- $\vec{u}_{i}^{T} \vec{v}_{j}=0$ for $i \neq j$ - any square matrix with distinct eigenvalues
- $\vec{u}_{i}=\vec{v}_{i}$ - symmetric matrix
- $\vec{v}_{i}^{T} \vec{v}_{i}=1$ - standard normalization of eigenvectors for any matrix (this is what $\left\|\vec{v}_{i}\right\|=1$ means).
Putting it all together, we get that

$$
\vec{v}_{i}^{T} \vec{v}_{j}= \begin{cases}1 & i=j \\ 0 & i \neq j\end{cases}
$$

The eigenvector matrix

So if A is symmetric with distinct eigenvalues, then its eigenvectors are orthonormal:

$$
\vec{v}_{i}^{T} \vec{v}_{j}= \begin{cases}1 & i=j \\ 0 & i \neq j\end{cases}
$$

We can write this as

$$
V^{T} V=1
$$

where

$$
V=\left[\vec{v}_{0}, \ldots, \vec{v}_{D-1}\right]
$$

The eigenvector matrix is orthonormal

$$
V^{T} V=I
$$

... and it also turns out that

$$
V V^{T}=I
$$

Proof: $V V^{T}=V I V^{T}=V\left(V^{T} V\right) V^{T}=\left(V V^{T}\right)^{2}$, but the only matrix that satisfies $V V^{T}=\left(V V^{T}\right)^{2}$ is $V V^{T}=I$.

Eigenvectors orthogonalize a symmetric matrix

So now, suppose A is symmetric:

$$
\vec{v}_{i}^{T} A \vec{v}_{j}=\vec{v}_{i}^{T}\left(\lambda_{j} \vec{v}_{j}\right)=\lambda_{j} \vec{v}_{i}^{T} \vec{v}_{j}= \begin{cases}\lambda_{j}, & i=j \\ 0, & i \neq j\end{cases}
$$

In other words, if a symmetric matrix has D eigenvectors with distinct eigenvalues, then its eigenvectors orthogonalize A :

$$
\begin{gathered}
V^{T} A V=\Lambda \\
\Lambda=\left[\begin{array}{ccc}
\lambda_{0} & 0 & 0 \\
0 & \cdots & 0 \\
0 & 0 & \lambda_{D-1}
\end{array}\right]
\end{gathered}
$$

A symmetric matrix is the weighted sum of its eigenvectors:

One more thing. Notice that

$$
A=V V^{T} A V V^{T}=V \wedge V^{T}
$$

The last term is

$$
\left[\vec{v}_{0}, \ldots, \vec{v}_{D-1}\right]\left[\begin{array}{ccc}
\lambda_{0} & 0 & 0 \\
0 & \ldots & 0 \\
0 & 0 & \lambda_{D-1}
\end{array}\right]\left[\begin{array}{c}
\vec{v}_{0}^{T} \\
\vdots \\
\vec{v}_{D-1}^{T}
\end{array}\right]=\sum_{d=0}^{D-1} \lambda_{d} \vec{v}_{d} \vec{v}_{d}^{T}
$$

Summary: properties of symmetric matrices

If A is symmetric with D eigenvectors, and D distinct eigenvalues, then

$$
\begin{aligned}
A & =V \Lambda V^{T} \\
\Lambda & =V^{T} A V \\
V V^{T} & =V^{T} V=1
\end{aligned}
$$

Outline

(1) Review: Linear Algebra

(2) Left and Right Eigenvectors

3 Eigenvectors of symmetric matrices
(4) Examples
(5) Summary

In-Lecture Written Example Problem

Pick an arbitrary 2×2 symmetric matrix. Find its eigenvalues and eigenvectors. Show that $\Lambda=V^{T} A V$ and $A=V \wedge V^{T}$.

-
 In-Lecture Jupyter Example Problem

Create a jupyter notebook. Pick an arbitrary 2×2 matrix. Plot a unit circle in the \vec{x} space, and show what happens to those vectors after transformation to the \vec{y} space. Calculate the determinant of the matrix, and its eigenvalues and eigenvectors. Show that $A \vec{v}=\lambda \vec{v}$.

Outline

(1) Review: Linear Algebra

(2) Left and Right Eigenvectors
(3) Eigenvectors of symmetric matrices
(4) Examples
(5) Summary

Summary

- A linear transform, A, maps vectors in space \vec{x} to vectors in space \vec{y}.
- The determinant, $|A|$, tells you how the volume of the unit sphere is scaled by the linear transform.
- Every $D \times D$ linear transform has D eigenvalues, which are the roots of the equation $|A-\lambda I|=0$.
- Left and right eigenvectors of a matrix are either orthogonal $\left(\vec{u}_{i}^{T} \vec{v}_{j}=0\right)$ or share the same eigenvalue ($\kappa_{i}=\lambda_{j}$).
- For a symmetric matrix, the left and right eigenvectors are the same. If the eigenvalues are distinct and real, then:

$$
A=V \wedge V^{T}, \quad \Lambda=V^{T} A V, \quad V V^{T}=V^{T} V=I
$$

