Lecture 2: Linear Prediction

Mark Hasegawa-Johnson

ECE 417: Multimedia Signal Processing, Fall 2021
(1) Review: All-Pole Filters
(2) Inverse Filtering
(3) Linear Prediction

44 Finding the Linear Predictive Coefficients
(5) Summary

Outline

(1) Review: All-Pole Filters

2 Inverse Filtering
(3) Linear Prediction

4 Finding the Linear Predictive Coefficients
(5) Summary

All-Pole Filter

An all-pole filter has the system function:

$$
H(z)=\frac{1}{\left(1-p_{1} z^{-1}\right)\left(1-p_{1}^{*} z^{-1}\right)}=\frac{1}{1-a_{1} z^{-1}-a_{2} z^{-2}},
$$

so it can be implemented as

$$
y[n]=x[n]+a_{1} y[n-1]+a_{2} y[n-2]
$$

where

$$
\begin{aligned}
& a_{1}=\left(p_{1}+p_{1}^{*}\right)=2 e^{-\sigma_{1}} \cos \left(\omega_{1}\right) \\
& a_{2}=-\left|p_{1}\right|^{2}=-e^{-2 \sigma_{1}}
\end{aligned}
$$

Frequency Response of an All-Pole Filter

We get the magnitude response by just plugging in $z=e^{j \omega}$, and taking absolute value:

$$
|H(\omega)|=|H(z)|_{z=e^{j \omega}}=\frac{1}{\left|e^{j \omega}-p_{1}\right| \times\left|e^{j \omega}-p_{1}^{*}\right|}
$$

Impulse Response of an All-Pole Filter

We get the impulse response using partial fraction expansion:

$$
\begin{aligned}
h[n] & =\left(C_{1} p_{1}^{n}+C_{1}^{*}\left(p_{1}^{*}\right)^{n}\right) u[n] \\
& =\frac{1}{\sin \left(\omega_{1}\right)} e^{-\sigma_{1} n} \sin \left(\omega_{1}(n+1)\right) u[n]
\end{aligned}
$$

Speech is made up of Damped Sinusoids

Resonant systems, like speech, trumpets, and bells, are made up from the series combination of second-order all-pole filters.

Waveform of the vowel /o/

Outline

(1) Review: All-Pole Filters

(2) Inverse Filtering
(3) Linear Prediction

4 Finding the Linear Predictive Coefficients
(5) Summary

Speech

Speech is made when we take a series of impulses, one every $5-10 \mathrm{~ms}$, and filter them through a resonant cavity (like a bell).

Air pressure at glottis $=$ series of negative impulses

Impulse response of the vocal tract = damped resonances

Air pressure at lips = series of damped resonances

Speech

Speech is made when we take a series of impulses, one every $5-10 \mathrm{~ms}$, and filter them through a resonant cavity (like a bell).

$$
S(z)=H(z) E(z)=\frac{1}{A(z)} E(z)
$$

where the excitation signal is a set of impulses, maybe only one per frame:

$$
e[n]=G \delta\left[n-n_{0}\right]
$$

The only thing we don't know, really, is the amplitude of the impulse (G), and the time at which it occurs (n_{0}). Can we find out?

Speech: The Model

Air pressure at glottis $=G \delta\left[n-n_{0}\right]$, once per frame

Impulse response of the vocal tract

Air pressure at lips $=G h\left[n-n_{0}\right]$, once per frame

Speech: The Real Thing

Inverse Filtering

If $S(z)=E(z) / A(z)$, then we can get $E(z)$ back again by doing something called an inverse filter:

$$
\text { IF: } S(z)=\frac{1}{A(z)} E(z) \quad \text { THEN: } E(z)=A(z) S(z)
$$

The inverse filter, $A(z)$, has a form like this:

$$
A(z)=1-\sum_{k=1}^{p} a_{k} z^{-k}
$$

where p is twice the number of resonant frequencies. So if speech has 4-5 resonances, then $p \approx 10$.

Inverse Filtering

Waveform, $s[n]$, of the vowel /o/

Result of Inverse Filtering, $e[n]=s[n]-s u m_{k} a_{k} s[n-k]$

Inverse Filtering

This one is an all-pole (feedback-only) filter:

$$
S(z)=\frac{1}{1-\sum_{k=1}^{p} a_{k} z^{-k}} E(z)
$$

That means this one is an all-zero (feedfoward only) filter:

$$
E(z)=\left(1-\sum_{k=1}^{p} a_{k} z^{-k}\right) S(z)
$$

which we can implement just like this:

$$
e[n]=s[n]-\sum_{k=1}^{p} a_{k} s[n-k]
$$

Outline

(1) Review: All-Pole Filters

(2) Inverse Filtering
(3) Linear Prediction

44 Finding the Linear Predictive Coefficients
(5) Summary

Linear Predictive Analysis

This particular feedforward filter is called linear predictive analysis:

$$
e[n]=s[n]-\sum_{k=1}^{p} a_{k} s[n-k]
$$

It's kind of like we're trying to predict $s[n]$ using a linear combination of its own past samples:

$$
\hat{s}[n]=\sum_{k=1}^{p} a_{k} s[n-k],
$$

and then $e[n]$, the glottal excitation, is the part that can't be predicted:

$$
e[n]=s[n]-\hat{s}[n]
$$

Linear Predictive Analysis

Actually, linear predictive analysis is used a lot more often in finance, these days, than in speech:

- In finance: detect important market movements = price changes that are not predictable from recent history.
- In health: detect EKG patterns that are not predictable from recent history.
- In geology: detect earthquakes $=$ impulses that are not predictable from recent history.
- ... you get the idea. . .

Linear Predictive Analysis Filter

Linear Predictive Synthesis

The corresponding feedback filter is called linear predictive synthesis. The idea is that, given $e[n]$, we can resynthesize $s[n]$ by adding feedback, because:

$$
S(z)=\frac{1}{1-\sum_{k=1}^{p} a_{k} z^{-k}} E(z)
$$

means that

$$
s[n]=e[n]+\sum_{k=1}^{p} a_{k} s[n-k]
$$

Linear Predictive Synthesis Filter

Outline

(1) Review: All-Pole Filters

(2) Inverse Filtering
(3) Linear Prediction
(4) Finding the Linear Predictive Coefficients
(5) Summary

Finding the Linear Predictive Coefficients

Things we don't know:

- The timing of the unpredictable event (n_{0}), and its amplitude (G).
- The coefficients a_{k}.

It seems that, in order to find n_{0} and G, we first need to know the predictor coefficients, a_{k}. How can we find a_{k} ?

Finding the Linear Predictive Coefficients

Let's make the following assumption:

- Everything that can be predicted is part of $\hat{s}[n]$. Only the unpredictable part is e[n].

Finding the Linear Predictive Coefficients

Let's make the following assumption:

- Everything that can be predicted is part of $\hat{s}[n]$. Only the unpredictable part is e[n].
- So we define $e[n]$ to be:

$$
e[n]=s[n]-\sum_{k=1}^{p} a_{k} s[n-k]
$$

- ... and then choose a_{k} to make $e[n]$ as small as possible.

$$
a_{k}=\operatorname{argmin} \sum_{n=-\infty}^{\infty} e^{2}[n]
$$

Finding the Linear Predictive Coefficients

So we've formulated the problem like this: we want to find a_{k} in order to minimize:

$$
\mathcal{E}=\sum_{n=-\infty}^{\infty} e^{2}[n]=\sum_{n=-\infty}^{\infty}\left(s[n]-\sum_{m=1}^{p} a_{m} s[n-m]\right)^{2}
$$

Finding the Linear Predictive Coefficients

We want to find the coefficients a_{k} that minimize \mathcal{E}. We can do that by differentiating, and setting the derivative equal to zero:

$$
\begin{aligned}
& \frac{d \mathcal{E}}{d a_{k}}=2 \sum_{n=-\infty}^{\infty}\left(s[n]-\sum_{m=1}^{p} a_{m} s[n-m]\right) s[n-k], \quad \text { for all } 1 \leq k \leq p \\
& 0=\sum_{n=-\infty}^{\infty}\left(s[n]-\sum_{m=1}^{p} a_{m} s[n-m]\right) s[n-k], \quad \text { for all } 1 \leq k \leq p
\end{aligned}
$$

This is a set of p different equations (for $1 \leq k \leq p$) in p different unknowns $\left(a_{k}\right)$. So it can be solved.

Autocorrelation

In order to write the solution more easily, let's define something called the "autocorrelation," $R[m]$:

$$
R[m]=\sum_{n=-\infty}^{\infty} s[n] s[n-m]
$$

In terms of the autocorrelation, the derivative of the error is

$$
0=R[k]-\sum_{m=1}^{p} a_{m} R[k-m] \quad \forall 1 \leq k \leq p
$$

or we could write

$$
R[k]=\sum_{m=1}^{p} a_{m} R[k-m] \quad \forall 1 \leq k \leq p
$$

Matrices

Since we have p linear equations in p unknowns, let's write this as a matrix equation:

$$
\left[\begin{array}{c}
R[1] \\
R[2] \\
\vdots \\
R[p]
\end{array}\right]=\left[\begin{array}{cccc}
R[0] & R[1] & \cdots & R[p-1] \\
R[1] & R[0] & \cdots & R[p-2] \\
\vdots & \vdots & \ddots & \vdots \\
R[p-1] & R[p-2] & \cdots & R[0]
\end{array}\right]\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{p}
\end{array}\right]
$$

where I've taken advantage of the fact that $R[m]=R[-m]$:

$$
R[m]=\sum_{n=-\infty}^{\infty} s[n] s[n-m]
$$

Matrices

Since we have p linear equations in p unknowns, let's write this as a matrix equation:

$$
\vec{\gamma}=R \vec{a}
$$

where

$$
\vec{\gamma}=\left[\begin{array}{c}
R[1] \\
R[2] \\
\vdots \\
R[p]
\end{array}\right], \quad R=\left[\begin{array}{cccc}
R[0] & R[1] & \cdots & R[p-1] \\
R[1] & R[0] & \cdots & R[p-2] \\
\vdots & \vdots & \ddots & \vdots \\
R[p-1] & R[p-2] & \cdots & R[0]
\end{array}\right] .
$$

Matrices

Since we have p linear equations in p unknowns, let's write this as a matrix equation:

$$
\vec{\gamma}=R \vec{a}
$$

and therefore the solution is

$$
\vec{a}=R^{-1} \vec{\gamma}
$$

Finding the Linear Predictive Coefficients

So here's the way we perform linear predictive analysis:
(1) Create the matrix R and vector $\vec{\gamma}$:

$$
\vec{\gamma}=\left[\begin{array}{c}
R[1] \\
R[2] \\
\vdots \\
R[p]
\end{array}\right], \quad R=\left[\begin{array}{cccc}
R[0] & R[1] & \cdots & R[p-1] \\
R[1] & R[0] & \cdots & R[p-2] \\
\vdots & \vdots & \ddots & \vdots \\
R[p-1] & R[p-2] & \cdots & R[0]
\end{array}\right]
$$

(2) Invert R.

$$
\vec{a}=R^{-1} \vec{\gamma}
$$

Inverse Filtering

Waveform, $s[n]$, of the vowel /o/

Result of Inverse Filtering, $e[n]=s[n]-s u m_{k} a_{k} s[n-k]$

Outline

(1) Review: All-Pole Filters

2 Inverse Filtering
(3) Linear Prediction

4 Finding the Linear Predictive Coefficients
(5) Summary

Inverse Filtering

If $S(z)=E(z) / A(z)$, then we can get $E(z)$ back again by doing something called an inverse filter:

$$
\text { IF: } S(z)=\frac{1}{A(z)} E(z) \quad \text { THEN: } E(z)=A(z) S(z)
$$

which we implement using a feedfoward difference equation, that computes a linear prediction of $s[n]$, then finds the difference between $s[n]$ and its linear prediction:

$$
e[n]=s[n]-\sum_{k=1}^{p} a_{k} s[n-k]
$$

Linear Predictive Analysis

Actually, linear predictive analysis is used a lot more often in finance, these days, than in speech:

- In finance: detect important market movements = price changes that are not predictable from recent history.
- In health: detect EKG patterns that are not predictable from recent history.
- In geology: detect earthquakes $=$ impulses that are not predictable from recent history.
- ... you get the idea. . .

Finding the Linear Predictive Coefficients

Let's make the following assumption:

- Everything that can be predicted is part of $\hat{s}[n]$. Only the unpredictable part is $e[n]$.
- So we define $e[n]$ to be:

$$
e[n]=s[n]-\sum_{k=1}^{p} a_{k} s[n-k]
$$

- and then choose a_{k} to make $e[n]$ as small as possible.

$$
a_{k}=\operatorname{argmin} \sum_{n=-\infty}^{\infty} e^{2}[n]
$$

which, when solved, gives us the simple equation $\vec{a}=R^{-1} \vec{\gamma}$.

