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All-Pole Filter

An all-pole filter has the system function:

H(z) =
1

(1− p1z−1)(1− p∗1z
−1)

=
1

1− a1z−1 − a2z−2
,

so it can be implemented as

y [n] = x [n] + a1y [n − 1] + a2y [n − 2]

where

a1 = (p1 + p∗1) = 2e−σ1 cos(ω1)

a2 = −|p1|2 = −e−2σ1
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Frequency Response of an All-Pole Filter

We get the magnitude response by just plugging in z = e jω, and
taking absolute value:

|H(ω)| = |H(z)|z=e jω =
1

|e jω − p1| × |e jω − p∗1 |
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Impulse Response of an All-Pole Filter

We get the impulse response using partial fraction expansion:

h[n] = (C1p
n
1 + C ∗1 (p∗1)n) u[n]

=
1

sin(ω1)
e−σ1n sin (ω1(n + 1)) u[n]
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Speech is made up of Damped Sinusoids

Resonant systems, like speech, trumpets, and bells, are made up
from the series combination of second-order all-pole filters.
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Speech

Speech is made when we take a series of impulses, one every
5-10ms, and filter them through a resonant cavity (like a bell).

S(z) = H(z)E (z) =
1

A(z)
E (z)

where the excitation signal is a set of impulses, maybe only one per
frame:

e[n] = Gδ[n − n0]

The only thing we don’t know, really, is the amplitude of the
impulse (G ), and the time at which it occurs (n0). Can we find
out?
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Speech: The Model
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Speech: The Real Thing
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Inverse Filtering

If S(z) = E (z)/A(z), then we can get E (z) back again by doing
something called an inverse filter:

IF: S(z) =
1

A(z)
E (z) THEN: E (z) = A(z)S(z)

The inverse filter, A(z), has a form like this:

A(z) = 1−
p∑

k=1

akz
−k

where p is twice the number of resonant frequencies. So if speech
has 4-5 resonances, then p ≈ 10.
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Inverse Filtering
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Inverse Filtering

This one is an all-pole (feedback-only) filter:

S(z) =
1

1−
∑p

k=1 akz
−k E (z)

That means this one is an all-zero (feedfoward only) filter:

E (z) =

(
1−

p∑
k=1

akz
−k

)
S(z)

which we can implement just like this:

e[n] = s[n]−
p∑

k=1

aks[n − k]
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Linear Predictive Analysis

This particular feedforward filter is called linear predictive
analysis:

e[n] = s[n]−
p∑

k=1

aks[n − k]

It’s kind of like we’re trying to predict s[n] using a linear
combination of its own past samples:

ŝ[n] =

p∑
k=1

aks[n − k],

and then e[n], the glottal excitation, is the part that can’t be
predicted:

e[n] = s[n]− ŝ[n]
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Linear Predictive Analysis

Actually, linear predictive analysis is used a lot more often in
finance, these days, than in speech:

In finance: detect important market movements = price
changes that are not predictable from recent history.

In health: detect EKG patterns that are not predictable from
recent history.

In geology: detect earthquakes = impulses that are not
predictable from recent history.

. . . you get the idea. . .
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Linear Predictive Analysis Filter

e[n]

−a4z−1

−a3z−1

−a2z−1

−a1z−1
s[n]
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Linear Predictive Synthesis

The corresponding feedback filter is called linear predictive
synthesis. The idea is that, given e[n], we can resynthesize s[n] by
adding feedback, because:

S(z) =
1

1−
∑p

k=1 akz
−k E (z)

means that

s[n] = e[n] +

p∑
k=1

aks[n − k]
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Linear Predictive Synthesis Filter

s[n]

a4 z−1

a3 z−1

a2 z−1

a1 z−1
e[n]
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Finding the Linear Predictive Coefficients

Things we don’t know:

The timing of the unpredictable event (n0), and its amplitude
(G ).

The coefficients ak .

It seems that, in order to find n0 and G , we first need to know the
predictor coefficients, ak . How can we find ak?
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Let’s make the following assumption:

Everything that can be predicted is part of ŝ[n]. Only the
unpredictable part is e[n].
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Finding the Linear Predictive Coefficients

Let’s make the following assumption:

Everything that can be predicted is part of ŝ[n]. Only the
unpredictable part is e[n].

So we define e[n] to be:

e[n] = s[n]−
p∑

k=1

aks[n − k]

. . . and then choose ak to make e[n] as small as possible.

ak = argmin
∞∑

n=−∞
e2[n]
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Finding the Linear Predictive Coefficients

So we’ve formulated the problem like this: we want to find ak in
order to minimize:

E =
∞∑

n=−∞
e2[n] =

∞∑
n=−∞

(
s[n]−

p∑
m=1

ams[n −m]

)2
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Finding the Linear Predictive Coefficients

We want to find the coefficients ak that minimize E . We can do
that by differentiating, and setting the derivative equal to zero:

dE
dak

= 2
∞∑

n=−∞

(
s[n]−

p∑
m=1

ams[n −m]

)
s[n−k], for all 1 ≤ k ≤ p

0 =
∞∑

n=−∞

(
s[n]−

p∑
m=1

ams[n −m]

)
s[n − k], for all 1 ≤ k ≤ p

This is a set of p different equations (for 1 ≤ k ≤ p) in p different
unknowns (ak). So it can be solved.
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Autocorrelation

In order to write the solution more easily, let’s define something
called the “autocorrelation,” R[m]:

R[m] =
∞∑

n=−∞
s[n]s[n −m]

In terms of the autocorrelation, the derivative of the error is

0 = R[k]−
p∑

m=1

amR[k −m] ∀ 1 ≤ k ≤ p

or we could write

R[k] =

p∑
m=1

amR[k −m] ∀ 1 ≤ k ≤ p
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Matrices

Since we have p linear equations in p unknowns, let’s write this as
a matrix equation:

R[1]
R[2]

...
R[p]

 =


R[0] R[1] · · · R[p − 1]
R[1] R[0] · · · R[p − 2]

...
...

. . .
...

R[p − 1] R[p − 2] · · · R[0]




a1
a2
...
ap


where I’ve taken advantage of the fact that R[m] = R[−m]:

R[m] =
∞∑

n=−∞
s[n]s[n −m]
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Matrices

Since we have p linear equations in p unknowns, let’s write this as
a matrix equation:

~γ = R~a

where

~γ =


R[1]
R[2]

...
R[p]

 , R =


R[0] R[1] · · · R[p − 1]
R[1] R[0] · · · R[p − 2]

...
...

. . .
...

R[p − 1] R[p − 2] · · · R[0]

 .
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Matrices

Since we have p linear equations in p unknowns, let’s write this as
a matrix equation:

~γ = R~a

and therefore the solution is

~a = R−1~γ
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Finding the Linear Predictive Coefficients

So here’s the way we perform linear predictive analysis:

1 Create the matrix R and vector ~γ:

~γ =


R[1]
R[2]

...
R[p]

 , R =


R[0] R[1] · · · R[p − 1]
R[1] R[0] · · · R[p − 2]

...
...

. . .
...

R[p − 1] R[p − 2] · · · R[0]


2 Invert R.

~a = R−1~γ
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Inverse Filtering
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Inverse Filtering

If S(z) = E (z)/A(z), then we can get E (z) back again by doing
something called an inverse filter:

IF: S(z) =
1

A(z)
E (z) THEN: E (z) = A(z)S(z)

which we implement using a feedfoward difference equation, that
computes a linear prediction of s[n], then finds the difference
between s[n] and its linear prediction:

e[n] = s[n]−
p∑

k=1

aks[n − k]
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Linear Predictive Analysis

Actually, linear predictive analysis is used a lot more often in
finance, these days, than in speech:

In finance: detect important market movements = price
changes that are not predictable from recent history.

In health: detect EKG patterns that are not predictable from
recent history.

In geology: detect earthquakes = impulses that are not
predictable from recent history.

. . . you get the idea. . .
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Finding the Linear Predictive Coefficients

Let’s make the following assumption:

Everything that can be predicted is part of ŝ[n]. Only the
unpredictable part is e[n].

So we define e[n] to be:

e[n] = s[n]−
p∑

k=1

aks[n − k]

. . . and then choose ak to make e[n] as small as possible.

ak = argmin
∞∑

n=−∞
e2[n]

which, when solved, gives us the simple equation ~a = R−1~γ.
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