| Review | Second-Order | Linear Prediction | Predictors | Summary |
|--------|--------------|-------------------|------------|---------|
|        |              |                   |            |         |

# Lecture 2: Linear Prediction

Mark Hasegawa-Johnson

#### ECE 417: Multimedia Signal Processing, Fall 2021

| Review | Second-Order | Linear Prediction | Predictors | Summary |
|--------|--------------|-------------------|------------|---------|
|        |              |                   |            |         |

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで



- 2 Inverse Filtering
- 3 Linear Prediction
- 4 Finding the Linear Predictive Coefficients

### 5 Summary

| Review  | Second-Order | Linear Prediction | Predictors  | Summary |
|---------|--------------|-------------------|-------------|---------|
| ●0000   | 00000000     |                   | 00000000000 | 0000    |
| Outline |              |                   |             |         |

Review: All-Pole Filters

- 2 Inverse Filtering
- **3** Linear Prediction

Finding the Linear Predictive Coefficients

### **5** Summary

| Review<br>○●000 | Second-Order | Linear Prediction | Predictors<br>00000000000 | Summary<br>0000 |
|-----------------|--------------|-------------------|---------------------------|-----------------|
| All-Pole F      | Filter       |                   |                           |                 |

An all-pole filter has the system function:

$$H(z) = \frac{1}{(1 - p_1 z^{-1})(1 - p_1^* z^{-1})} = \frac{1}{1 - a_1 z^{-1} - a_2 z^{-2}}$$

so it can be implemented as

$$y[n] = x[n] + a_1y[n-1] + a_2y[n-2]$$

where

$$a_1 = (p_1 + p_1^*) = 2e^{-\sigma_1} \cos(\omega_1)$$
  
$$a_2 = -|p_1|^2 = -e^{-2\sigma_1}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○



### Frequency Response of an All-Pole Filter

We get the magnitude response by just plugging in  $z = e^{j\omega}$ , and taking absolute value:

$$|H(\omega)| = |H(z)|_{z=e^{j\omega}} = rac{1}{|e^{j\omega} - p_1| \times |e^{j\omega} - p_1^*|}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00



# Impulse Response of an All-Pole Filter

We get the impulse response using partial fraction expansion:

$$h[n] = (C_1 p_1^n + C_1^* (p_1^*)^n) u[n]$$
  
=  $\frac{1}{\sin(\omega_1)} e^{-\sigma_1 n} \sin(\omega_1(n+1)) u[n]$ 

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ



Resonant systems, like speech, trumpets, and bells, are made up from the series combination of second-order all-pole filters.



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

| Review  | Second-Order | Linear Prediction | Predictors  | Summary |
|---------|--------------|-------------------|-------------|---------|
| 00000   | ●○○○○○○○     |                   | 00000000000 | 0000    |
| Outline |              |                   |             |         |



- Inverse Filtering
- **3** Linear Prediction
  - 4 Finding the Linear Predictive Coefficients

### **5** Summary

| Review | Second-Order | Linear Prediction | Predictors  | Summary |
|--------|--------------|-------------------|-------------|---------|
| 00000  | ○●000000     |                   | 00000000000 | 0000    |
| Speech |              |                   |             |         |

Speech is made when we take a series of impulses, one every 5-10ms, and filter them through a resonant cavity (like a bell).



200



Speech is made when we take a series of impulses, one every 5-10ms, and filter them through a resonant cavity (like a bell).

$$S(z) = H(z)E(z) = \frac{1}{A(z)}E(z)$$

where the excitation signal is a set of impulses, maybe only one per frame:

$$e[n] = G\delta[n - n_0]$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The only thing we don't know, really, is the amplitude of the impulse (G), and the time at which it occurs  $(n_0)$ . Can we find out?

| Review  | Second-Order | Linear Prediction | Predictors  | Summary |
|---------|--------------|-------------------|-------------|---------|
| 00000   | ○00●0000     | 000000            | 00000000000 | 0000    |
| Speech: | The Model    |                   |             |         |





Time (samples)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで





・ロト・西ト・西ト・西ト・日・ シック

| Review     | Second-Order | Linear Prediction | Predictors  | Summary |
|------------|--------------|-------------------|-------------|---------|
| 00000      | ○○○○○●○○     |                   | 00000000000 | 0000    |
| Inverse Fi | ltering      |                   |             |         |

If S(z) = E(z)/A(z), then we can get E(z) back again by doing something called an **inverse filter:** 

**IF**: 
$$S(z) = \frac{1}{A(z)}E(z)$$
 **THEN**:  $E(z) = A(z)S(z)$ 

The inverse filter, A(z), has a form like this:

$$A(z) = 1 - \sum_{k=1}^{p} a_k z^{-k}$$

where p is twice the number of resonant frequencies. So if speech has 4-5 resonances, then  $p \approx 10$ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

| Review  | Second-Order | Linear Prediction | Predictors  | Summary |
|---------|--------------|-------------------|-------------|---------|
| 00000   | ○00000●0     |                   | 00000000000 | 0000    |
| Inverse | Filtering    |                   |             |         |



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

| Review  | Second-Order | Linear Prediction | Predictors  | Summary |
|---------|--------------|-------------------|-------------|---------|
| 00000   | ○000000●     |                   | 00000000000 | 0000    |
| Inverse | Filtering    |                   |             |         |

This one is an all-pole (feedback-only) filter:

$$S(z) = \frac{1}{1 - \sum_{k=1}^{p} a_k z^{-k}} E(z)$$

That means this one is an all-zero (feedfoward only) filter:

$$E(z) = \left(1 - \sum_{k=1}^{p} a_k z^{-k}\right) S(z)$$

which we can implement just like this:

$$e[n] = s[n] - \sum_{k=1}^{p} a_k s[n-k]$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

| Review<br>00000 | Second-Order | Linear Prediction | Predictors<br>00000000000 | Summary<br>0000 |
|-----------------|--------------|-------------------|---------------------------|-----------------|
| Outline         |              |                   |                           |                 |

Review: All-Pole Filters

Inverse Filtering

3 Linear Prediction

Finding the Linear Predictive Coefficients

#### **5** Summary

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで



This particular feedforward filter is called **linear predictive** analysis:

$$e[n] = s[n] - \sum_{k=1}^{p} a_k s[n-k]$$

It's kind of like we're trying to predict s[n] using a linear combination of its own past samples:

$$\hat{s}[n] = \sum_{k=1}^{p} a_k s[n-k],$$

and then e[n], the glottal excitation, is the part that can't be predicted:

$$e[n] = s[n] - \hat{s}[n]$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @



Actually, linear predictive analysis is used a lot more often in finance, these days, than in speech:

- In finance: detect important market movements = price changes that are not predictable from recent history.
- In health: detect EKG patterns that are not predictable from recent history.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- In geology: detect earthquakes = impulses that are not predictable from recent history.
- ... you get the idea...

| Review | Second-Order  | Linear Prediction | Predictors  | Summary |
|--------|---------------|-------------------|-------------|---------|
| 00000  | 0000000       | ○00●00            | 00000000000 | 0000    |
| Linear | Predictive An | alvsis Filter     |             |         |



◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @



The corresponding feedback filter is called **linear predictive synthesis**. The idea is that, given e[n], we can resynthesize s[n] by adding feedback, because:

$$S(z)=\frac{1}{1-\sum_{k=1}^{p}a_{k}z^{-k}}E(z)$$

means that

$$s[n] = e[n] + \sum_{k=1}^{p} a_k s[n-k]$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 Review
 Second-Order
 Linear Prediction
 Predictors
 Summary

 O00000
 O000000
 O00000
 O000000
 O00000
 O00000

 Linear Predictive Synthesis Filter
 Summary
 O00000
 O00000
 O00000
 O00000



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

| Review  | Second-Order | Linear Prediction | Predictors  | Summary |
|---------|--------------|-------------------|-------------|---------|
| 00000   | 00000000     |                   | ●○○○○○○○○○○ | 0000    |
| Outline |              |                   |             |         |

- 1 Review: All-Pole Filters
- Inverse Filtering
- **3** Linear Prediction
- 4 Finding the Linear Predictive Coefficients

## **5** Summary

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

Things we don't know:

- The timing of the unpredictable event (n<sub>0</sub>), and its amplitude (G).
- The coefficients  $a_k$ .

It seems that, in order to find  $n_0$  and G, we first need to know the predictor coefficients,  $a_k$ . How can we find  $a_k$ ?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 Review
 Second-Order
 Linear Prediction
 Predictors
 Summary

 Finding the Linear Predictive Coefficients

Let's make the following assumption:

• Everything that can be predicted is part of  $\hat{s}[n]$ . Only the unpredictable part is e[n].

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @



Let's make the following assumption:

- Everything that can be predicted is part of ŝ[n]. Only the unpredictable part is e[n].
- So we define *e*[*n*] to be:

$$e[n] = s[n] - \sum_{k=1}^{p} a_k s[n-k]$$

• ... and then choose  $a_k$  to make e[n] as small as possible.

$$a_k = \operatorname{argmin} \sum_{n=-\infty}^{\infty} e^2[n]$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

So we've formulated the problem like this: we want to find  $a_k$  in order to minimize:

$$\mathcal{E} = \sum_{n=-\infty}^{\infty} e^2[n] = \sum_{n=-\infty}^{\infty} \left( s[n] - \sum_{m=1}^{p} a_m s[n-m] \right)^2$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで



Finding the Linear Predictive Coefficients

We want to find the coefficients  $a_k$  that minimize  $\mathcal{E}$ . We can do that by differentiating, and setting the derivative equal to zero:

$$\frac{d\mathcal{E}}{da_k} = 2\sum_{n=-\infty}^{\infty} \left( s[n] - \sum_{m=1}^{p} a_m s[n-m] \right) s[n-k], \text{ for all } 1 \le k \le p$$

$$0 = \sum_{n=-\infty} \left( s[n] - \sum_{m=1} a_m s[n-m] \right) s[n-k], \quad \text{for all } 1 \le k \le p$$

This is a set of p different equations (for  $1 \le k \le p$ ) in p different unknowns  $(a_k)$ . So it can be solved.

| Review<br>00000 | Second-Order | Linear Prediction | Predictors<br>○00000●00000 | Summary<br>0000 |  |  |
|-----------------|--------------|-------------------|----------------------------|-----------------|--|--|
| Autocorrelation |              |                   |                            |                 |  |  |

In order to write the solution more easily, let's define something called the "autocorrelation," R[m]:

$$R[m] = \sum_{n=-\infty}^{\infty} s[n]s[n-m]$$

In terms of the autocorrelation, the derivative of the error is

$$0 = R[k] - \sum_{m=1}^{p} a_m R[k-m] \quad \forall \ 1 \le k \le p$$

or we could write

$$R[k] = \sum_{m=1}^{p} a_m R[k-m] \quad \forall \ 1 \le k \le p$$

▲□▶▲□▶▲□▶▲□▶ □ のQの

| Review   | Second-Order | Linear Prediction | Predictors   | Summary |
|----------|--------------|-------------------|--------------|---------|
| 00000    | 00000000     |                   | ○00000000000 | 0000    |
| Matrices |              |                   |              |         |

Since we have p linear equations in p unknowns, let's write this as a matrix equation:

$$\begin{bmatrix} R[1] \\ R[2] \\ \vdots \\ R[p] \end{bmatrix} = \begin{bmatrix} R[0] & R[1] & \cdots & R[p-1] \\ R[1] & R[0] & \cdots & R[p-2] \\ \vdots & \vdots & \ddots & \vdots \\ R[p-1] & R[p-2] & \cdots & R[0] \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_p \end{bmatrix}$$

where I've taken advantage of the fact that R[m] = R[-m]:

$$R[m] = \sum_{n=-\infty}^{\infty} s[n]s[n-m]$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

| Review<br>00000 | Second-Order | Linear Prediction | Predictors<br>○0000000●000 | Summary<br>0000 |
|-----------------|--------------|-------------------|----------------------------|-----------------|
| Matrices        |              |                   |                            |                 |

Since we have p linear equations in p unknowns, let's write this as a matrix equation:

$$\vec{\gamma} = R\vec{a}$$

where

$$\vec{\gamma} = \begin{bmatrix} R[1] \\ R[2] \\ \vdots \\ R[p] \end{bmatrix}, \quad R = \begin{bmatrix} R[0] & R[1] & \cdots & R[p-1] \\ R[1] & R[0] & \cdots & R[p-2] \\ \vdots & \vdots & \ddots & \vdots \\ R[p-1] & R[p-2] & \cdots & R[0] \end{bmatrix}$$

٠

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

| Review<br>00000 | Second-Order | Linear Prediction | Predictors<br>○0000000000000 | Summary<br>0000 |
|-----------------|--------------|-------------------|------------------------------|-----------------|
| Matrices        |              |                   |                              |                 |

Since we have p linear equations in p unknowns, let's write this as a matrix equation:

$$\vec{\gamma} = R\vec{a}$$

and therefore the solution is

$$\vec{a} = R^{-1}\vec{\gamma}$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @



So here's the way we perform linear predictive analysis:

**(**) Create the matrix *R* and vector  $\vec{\gamma}$ :

$$\vec{\gamma} = \begin{bmatrix} R[1] \\ R[2] \\ \vdots \\ R[p] \end{bmatrix}, R = \begin{bmatrix} R[0] & R[1] & \cdots & R[p-1] \\ R[1] & R[0] & \cdots & R[p-2] \\ \vdots & \vdots & \ddots & \vdots \\ R[p-1] & R[p-2] & \cdots & R[0] \end{bmatrix}$$

Invert R.

$$\vec{a} = R^{-1}\vec{\gamma}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

| Review  | Second-Order | Linear Prediction | Predictors | Summary |
|---------|--------------|-------------------|------------|---------|
| 00000   | 00000000     |                   | ○000000000 | 0000    |
| Inverse | Filtering    |                   |            |         |



◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◆○◆

| Review  | Second-Order | Linear Prediction | Predictors  | Summary |
|---------|--------------|-------------------|-------------|---------|
| 00000   | 0000000      |                   | 00000000000 | ●○○○    |
| Outline |              |                   |             |         |

- 1 Review: All-Pole Filters
- 2 Inverse Filtering
- **3** Linear Prediction
  - Finding the Linear Predictive Coefficients





| Review      | Second-Order | Linear Prediction | Predictors  | Summary |
|-------------|--------------|-------------------|-------------|---------|
| 00000       | 00000000     |                   | 00000000000 | ○●00    |
| Inverse Fil | tering       |                   |             |         |

If S(z) = E(z)/A(z), then we can get E(z) back again by doing something called an **inverse filter:** 

**IF**: 
$$S(z) = \frac{1}{A(z)}E(z)$$
 **THEN**:  $E(z) = A(z)S(z)$ 

which we implement using a feedfoward difference equation, that computes a linear prediction of s[n], then finds the difference between s[n] and its linear prediction:

$$e[n] = s[n] - \sum_{k=1}^{p} a_k s[n-k]$$



Actually, linear predictive analysis is used a lot more often in finance, these days, than in speech:

- In finance: detect important market movements = price changes that are not predictable from recent history.
- In health: detect EKG patterns that are not predictable from recent history.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- In geology: detect earthquakes = impulses that are not predictable from recent history.
- ... you get the idea...



Finding the Linear Predictive Coefficients

Let's make the following assumption:

- Everything that can be predicted is part of s
   [n]. Only the unpredictable part is e[n].
- So we define e[n] to be:

$$e[n] = s[n] - \sum_{k=1}^{p} a_k s[n-k]$$

• ... and then choose  $a_k$  to make e[n] as small as possible.

$$a_k = \operatorname{argmin} \sum_{n=-\infty}^{\infty} e^2[n]$$

which, when solved, gives us the simple equation  $\vec{a} = R^{-1}\vec{\gamma}$ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00