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Assigned: Wednesday, 11/3/2021; Due: Tuesday, 11/9/2021
Reading: Christopher Bishop, Neural Networks for Pattern Recognition, chapters 3-4

Problem 5.1

A “spiral network” is a brand new category of neural network, invented just for this homework. It is a
network with a scalar input variable xi, a scalar target variable yi, and with the following architecture:

hi,j =

{
xi j = 1
g (ξi,j) 2 ≤ j ≤M , ξi,j =

j−1∑
k=1

wj,khi,k

Suppose that the network is trained to minimize the sum of the per-token squared errors E = 1
2

∑n
i=1(hi,M −

yi)
2. The error gradient can be written as

∂E
∂wj,k

=

n∑
i=1

δi,jhi,k

Find a formula that can be used to compute δi,j , for all 2 ≤ j ≤ M , in terms of yi, hij = g(ξij), and/or

g′(ξij) = dg
dξij

.

Solution:

δi,j =

{
(hi,M − yi)g′(ξi,M ) j = M∑M
k=j+1 δi,kwk,jg

′(ξi,j) otherwise

Problem 5.2

The back-prop of a convolution layer is correlation. What about if correlation is the forward-prop
rule? Let’s find out. Consider a “correlational” layer, given as follows, where h[m1,m2] is the hidden node
activation of the previous layer, and w[m1,m2] are the network weights:

ξ[n1, n2] = w[−n1,−n2] ∗ h[n1, n2]

=
∑
m1

∑
m2

w[m1 − n1,m2 − n2]h[m1,m2]

Suppose the loss, L, is some function whose derivatives with respect to ξ[n1, n2], δ[n1, n2] = dL
dξ[n1,n2]

, are

known. Find dL
dh[m1,m2]

and dL
dw[k1,k2]

in terms of δ[n1, n2].
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Solution: The rule of total derivatives says that we should add over all paths from the input to the output,
thus

dL
dh[m1,m2]

=
∑
n1

∑
n2

dL
dξ[n1, n2]

∂ξ[n1, n2]

∂h[m1,m2]

=
∑
n1

∑
n2

δ[n1, n2]w[m1 − n1,m2 − n2]

= δ[m1,m2] ∗ w[m1,m2],

so we see that the back-prop of correlation is convolution!
What about the weight gradient? Define k1 = m1 − n1, then m1 = k1 + n1, so

dL
dw[k1, k2]

=
∑
n1

∑
n2

dL
dξ[n1, n2]

∂ξ[n1, n2]

∂w[k1, k2]

=
∑
n1

∑
n2

δ[n1, n2]h[k1 + n1, k2 + n2]

That last line is something we don’t have a symbol for—it’s a kind of a correlation, but it’s not the same
kind of correlation as the forward layer. Since we’ve run out of convenient symbols, we’d better just leave it
as an explicit summation.

Problem 5.3

Consider the following nonlinearity, which might be appropriate at the output layer of a classifier. This
nonlinearity is sometimes called the “softcount” nonlinearity, and is closely related to the more common
“softmax.” The softmax and softcount share the following property: the input, ~ξ, and output, ~h are both
assumed to be vectors, ~ξ = [ξ1, . . . , ξNY

]T and ~h = [h1, . . . , hNY
]T . The kth output of the nonlinearity

depends on all of the inputs, not just on the kth input:

hk = gk(~ξ) =
eξk

max1≤`≤NY
eξ`

Suppose that the training target, y, is an integer, 1 ≤ y ≤ NY , and the loss is the categorical cross-entropy
function:

L = −
NY∑
k=1

1[y = k] lnhk

where

1[P ] =

{
1 P is true

0 otherwise

Find dL
dξk

, for each of the following four cases:

(a) k = y and k = argmax` e
ξ`

(b) k = y but k 6= argmax` e
ξ`

(c) k 6= y but k = argmax` e
ξ`

(d) k 6= y and k 6= argmax` e
ξ`

Express your answer in terms of h`, for any 1 ≤ ` ≤ NY including possibly ` = k, ` = y, or ` = argmax eξ` .
Do not express your answer in terms of ξk.
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Solution: Notice that
dL
dξk

= − 1

hy

∂hy
∂ξk

In the case k = y and k = argmax` e
ξ` ,

hy = 1

dL
dξk

= 0

In the case k = y but k 6= argmax` e
ξ` ,

∂hy
∂ξk

= hy

dL
dξk

= −1

In the case k 6= y but k = argmax` e
ξ` ,

∂hy
∂ξk

= −hy

dL
dξk

= 1

In the case k 6= y and k 6= argmax` e
ξ` ,

∂hy
∂ξk

= 0

dL
dξk

= 0

Problem 5.4

Consider a two-layer regression network with Nx input nodes, Nh hidden nodes, and Ny output nodes:

~f(~x) = W (2)σ
(
W (1)~x

)
(5.4-1)

Suppose that there are Ni training tokens, D = {(~x1, ~yi), . . . , (~xNi
, yNi

)}, and the loss is mean-squared error:

L =
1

Ni

Ni∑
i=1

‖~f(~xi)− ~yi‖22 (5.4-2)

• How many multiply-accumulate operations are required to calculate the gradients ∇W (2)L and ∇W (2)L
using forward-propagation and back-propagation?

Solution: Forward propagation requires Ni computations of Eq. (5.4-1), each of which takes NxNh+
NhNy multiplications. Back propagation takes the same number of operations, so the total is

2NiNh(Nx +Ny) = O {NiNh(Nx +Ny)}
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• Suppose you attempted to find these gradients using a forward-Euler approximation,

∂L
∂w

(l)
k,j

≈ 1

ε

(
L(w

(l)
k,j + ε)− L(w

(1)
k,j)
)
, (5.4-3)

for some suitably small value of ε. How many multiply-accumulate operations would be required to
compute ∇W (2)L and ∇W (2)L using Eq. (5.4-3)?

Solution: Computing Eq. (5.4-3) requires computing Eq. (5.4-1) twice, once using the current weights,

and once using a weight matrix with weight w
(l)
k,j replaced by w

(l)
k,j + ε. The first computation is shared

among all weights, but the second computation has to be performed separately for every weight. Thus
Eq. (5.4-1) needs to be computed Ni(1 +Nh(Nx +Ny)) times, for a total computation of

Ni(1 +Nh(Nx +Ny))(Nh(Nx +Ny)) = O
{
NiN

2
h(Nx +Ny)2

}


