ECE 417 Multimedia Signal Processing Solutions to Homework 4

UNIVERSITY OF ILLINOIS
Department of Electrical and Computer Engineering

Assigned: Tuesday, 10/12/2021; Due: Tuesday, 10/19/2021
Reading: L.R. Rabiner, A Tutorial on Hidden Markov Models and Selected Applications in
Speech Recognition, 1989

Problem 4.1

In a first-order Markov model, the state at time t depends only on the state at time $t-1$. A secondorder Markov model is a model in which the state at time t depends on a short list of recent states. For example, consider a model in which q_{t} depends on the most recent two frames. Let's suppose the model is fully defined by the following three types of parameters:

- Initial segment probability: $\pi_{i j} \equiv p\left(q_{1}=i, q_{2}=j \mid \Lambda\right)$
- Transition probability: $a_{i j k} \equiv p\left(q_{t}=k \mid q_{t-1}=j, q_{t-2}=i, \Lambda\right)$
- Observation probability: $b_{k}(\vec{x}) \equiv p\left(\vec{x}_{t}=\vec{x} \mid q_{t}=k, \Lambda\right)$

Design an algorithm similar to the forward algorithm that is able to compute $p(X \mid \Lambda)$ with a computational complexity of at most $\mathcal{O}\left\{T N^{3}\right\}$. Provide a proof that your algorithm has at most $\mathcal{O}\left\{T N^{3}\right\}$ complexity this can be an informal proof in the form of a bullet list, as was provided during lecture 12 for the standard forward algorithm.

Solution: Define $\alpha_{t}(i, j)=p\left(\vec{x}_{1}, \ldots, \vec{x}_{t}, q_{t-1}=i, q_{t}=j \mid \Lambda\right)$. Compute it as

- Initialize:

$$
\alpha_{2}(i, j)=\pi_{i j} b_{i}\left(\vec{x}_{1}\right) b_{j}\left(\vec{x}_{2}\right), \quad 1 \leq i, j \leq N
$$

- Iterate:

$$
\alpha_{t}(j, k)=\sum_{i=1}^{N} \alpha_{t-1}(i, j) a_{i j k} b_{k}\left(\vec{x}_{t}\right), \quad 1 \leq t \leq T, 1 \leq j, k \leq N
$$

- Terminate:

$$
p(X \mid \Lambda)=\sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{T}(i, j)
$$

The highest-complexity part of the algorithm is the iteration step, which requires:

- for each of T different time steps t,
- for each of N different values of j,
- for each of N different values of k,
- we must compute a summation with N terms,
hence it has $\mathcal{O}\left\{T N^{3}\right\}$ complexity.

Problem 4.2

Suppose you have a sequence of $T=100$ consecutive observations, $X=\left[x_{1}, \ldots, x_{T}\right]$. Suppose that the observations are discrete, $x_{t} \in\{1, \ldots, 20\}$. You have it on good information that these data can be modeled by an HMM with $N=10$ states, whose parameters are

- Initial state probability: $\pi_{i} \equiv p\left(q_{1}=i \mid \Lambda\right)$
- Transition probability: $a_{i j} \equiv p\left(q_{t}=j \mid q_{t-1}=i, \Lambda\right)$
- Observation probability: $b_{j}(x) \equiv p\left(x_{t}=x \mid q_{t}=j, \Lambda\right)$

In terms of these model parameters, and in terms of the forward probabilities $\alpha_{t}(i)$ and backward probabilities $\beta_{t}(i)$ (for any values of i, j, t, x that are useful to you), what is $p\left(q_{17}=7, x_{18}=3 \mid x_{1}, \ldots, x_{17}, x_{19}, \ldots, x_{100}, \Lambda\right)$?

Solution: Conditional $=$ joint $/$ marginal. The joint probability is

$$
p\left(q_{17}=7, x_{1}, \ldots, x_{17}, x_{18}=3, x_{19}, \ldots, x_{100}\right)=\sum_{j=1}^{10} \alpha_{17}(7) a_{7 j} b_{j}(3) \beta_{18}(j)
$$

The marginal is

$$
p\left(x_{1}, \ldots, x_{17}, x_{19}, \ldots, x_{100}\right)=\sum_{i=1}^{10} \sum_{j=1}^{10} \sum_{k=1}^{20} \alpha_{17}(i) a_{i j} b_{j}(k) \beta_{18}(j)
$$

So the conditional is

$$
p\left(q_{17}=7, x_{18}=3 \mid x_{1}, \ldots, x_{17}, x_{19}, \ldots, x_{100}\right)=\frac{\sum_{j=1}^{10} \alpha_{17}(7) a_{7 j} b_{j}(3) \beta_{18}(j)}{\sum_{i=1}^{10} \sum_{j=1}^{10} \sum_{k=1}^{20} \alpha_{17}(i) a_{i j} b_{j}(k) \beta_{18}(j)}
$$

Problem 4.3

A partially-observed Markov model is a model in which some part of the state variable is observed, while other parts are not observed. For example, consider a model with 2 states in which q_{1} is observed to be $q_{1}=1$, and q_{3} is observed to be $q_{3}=2$, but q_{2} is not observed. This model has no output vectors (no \vec{x}): your only observations are the two state IDs, q_{1} and q_{3}. All parts of this problem are cumulative; in your answer to any part, you may use any assumptions that were specified in any previous part.
(a) What is the visible dataset, \mathcal{D}_{v} ? What is the hidden dataset, \mathcal{D}_{h} ?

Solution:

$$
\begin{aligned}
\mathcal{D}_{v} & =\left\{q_{1}, q_{3}\right\} \\
\mathcal{D}_{h} & =\left\{q_{2}\right\}
\end{aligned}
$$

(b) Suppose that you have a transition probability matrix A, whose $(i, j)^{\text {th }}$ element is

$$
a_{i j}=p\left(q_{t}=j \mid q_{t-1}=i\right)
$$

Find a formula in terms of the elements of A for

$$
\gamma_{2}(j)=p\left(q_{2}=j \mid q_{1}=1, q_{3}=2, A\right)
$$

Solution:

$$
\gamma_{2}(j)=\frac{a_{1 j} a_{j 2}}{\sum_{i=1}^{2} a_{1 i} a_{i 2}}
$$

(c) The EM Q-function, also known as the expected log likelihood, can be defined as

$$
Q\left(A^{\prime}, A\right)=E\left[\ln p\left(q_{1}=1, q_{2}=j, q_{3}=2 \mid A^{\prime}\right) \mid q_{1}=1, q_{3}=2, A\right]
$$

Find a formula for $Q\left(A^{\prime}, A\right)$ in terms of the elements of A and A^{\prime}, and/or in terms of $\gamma_{2}(j)$.

Solution:

$$
Q\left(A^{\prime}, A\right)=\sum_{j=1}^{2} \gamma_{2}(j)\left(\ln a_{1 j}^{\prime}+\ln a_{j 2}^{\prime}\right)
$$

(d) The Lagrangian method for optimization works as follows. Suppose we are trying to find values of $a_{i j}^{\prime}$ that maximize $Q\left(A^{\prime}, A\right)$, subject to the stochastic constraint that

$$
\sum_{j=1}^{2} a_{i j}^{\prime}=1
$$

The Lagrangian method creates a Lagrangian function $L(A)$ by creating a "constraint term" $\left(1-\sum_{j} a_{i j}^{\prime}\right)$ that must be zero if the constraint is satisfied, multiplying the constraint term by a "Lagrangian multiplier" λ_{i}, and then adding the result to $Q\left(A^{\prime}, A\right)$, resulting in :

$$
L\left(A^{\prime}\right)=Q\left(A^{\prime}, A\right)+\sum_{i=1}^{2} \lambda_{i}\left(1-\sum_{j=1}^{2} a_{i j}^{\prime}\right)
$$

In terms of the elements of $A^{\prime}, \gamma_{2}(j)$, and the Lagrangian multipliers λ_{1} and λ_{2}, what are the values of $d L\left(A^{\prime}\right) / d a_{i j}^{\prime}$ for each value of $i, j \in\{1,2\}$?

Solution:

$$
\begin{aligned}
\frac{d L\left(A^{\prime}\right)}{d a_{11}^{\prime}} & =\frac{\gamma_{2}(1)}{a_{11}^{\prime}}-\lambda_{1} \\
\frac{d L\left(A^{\prime}\right)}{d a_{12}^{\prime}} & =\frac{1}{a_{12}^{\prime}}-\lambda_{1} \\
\frac{d L\left(A^{\prime}\right)}{d a_{21}^{\prime}} & =-\lambda_{2} \\
\frac{d L\left(A^{\prime}\right)}{d a_{22}^{\prime}} & =\frac{\gamma_{2}(2)}{a_{22}^{\prime}}-\lambda_{2}
\end{aligned}
$$

(e) Set $\frac{d L\left(A^{\prime}\right)}{d a_{11}^{\prime}}=0$ and $\frac{d L\left(A^{\prime}\right)}{d a_{12}^{\prime}}=0$. Doing so will give you the new model parameters, a_{11}^{\prime} and a_{12}^{\prime}, in terms of both $\gamma_{2}(j)$ and λ_{i}. Choose a value of λ_{i} so that $a_{11}^{\prime}+a_{12}^{\prime}=1$.

Solution:

$$
\begin{aligned}
a_{11}^{\prime} & =\frac{\gamma_{2}(1)}{1+\gamma_{2}(1)} \\
a_{12}^{\prime} & =\frac{1}{1+\gamma_{2}(1)}
\end{aligned}
$$

Note: you are not asked to solve for a_{21}^{\prime} because there's a trick: $d L / d a_{21}^{\prime}$ cannot be set to zero. As long as $\lambda_{2}>0, d L / d a_{21}^{\prime}<0$. The conclusion is that you should make a_{21}^{\prime} as small as possible, thus:

$$
\begin{aligned}
& a_{21}^{\prime}=0 \\
& a_{22}^{\prime}=1
\end{aligned}
$$

