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Problem 4.1

In a first-order Markov model, the state at time t depends only on the state at time t − 1. A second-
order Markov model is a model in which the state at time t depends on a short list of recent states. For
example, consider a model in which qt depends on the most recent two frames. Let’s suppose the model is
fully defined by the following three types of parameters:

• Initial segment probability: πij ≡ p(q1 = i, q2 = j|Λ)

• Transition probability: aijk ≡ p(qt = k|qt−1 = j, qt−2 = i,Λ)

• Observation probability: bk(~x) ≡ p(~xt = ~x|qt = k,Λ)

Design an algorithm similar to the forward algorithm that is able to compute p(X|Λ) with a computational
complexity of at most O

{
TN3

}
. Provide a proof that your algorithm has at most O

{
TN3

}
complexity —

this can be an informal proof in the form of a bullet list, as was provided during lecture 12 for the standard
forward algorithm.

Solution: Define αt(i, j) = p(~x1, . . . , ~xt, qt−1 = i, qt = j|Λ). Compute it as

• Initialize:
α2(i, j) = πijbi(~x1)bj(~x2), 1 ≤ i, j ≤ N

• Iterate:

αt(j, k) =

N∑
i=1

αt−1(i, j)aijkbk(~xt), 1 ≤ t ≤ T, 1 ≤ j, k ≤ N

• Terminate:

p(X|Λ) =

N∑
i=1

N∑
j=1

αT (i, j)

The highest-complexity part of the algorithm is the iteration step, which requires:

• for each of T different time steps t,

• for each of N different values of j,

• for each of N different values of k,

• we must compute a summation with N terms,
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hence it has O
{
TN3

}
complexity.

Problem 4.2

Suppose you have a sequence of T = 100 consecutive observations, X = [x1, . . . , xT ]. Suppose that the
observations are discrete, xt ∈ {1, . . . , 20}. You have it on good information that these data can be modeled
by an HMM with N = 10 states, whose parameters are

• Initial state probability: πi ≡ p(q1 = i|Λ)

• Transition probability: aij ≡ p(qt = j|qt−1 = i,Λ)

• Observation probability: bj(x) ≡ p(xt = x|qt = j,Λ)

In terms of these model parameters, and in terms of the forward probabilities αt(i) and backward probabilities
βt(i) (for any values of i, j, t, x that are useful to you), what is p(q17 = 7, x18 = 3|x1, . . . , x17, x19, . . . , x100,Λ)?

Solution: Conditional = joint / marginal. The joint probability is

p(q17 = 7, x1, . . . , x17, x18 = 3, x19, . . . , x100) =

10∑
j=1

α17(7)a7jbj(3)β18(j)

The marginal is

p(x1, . . . , x17, x19, . . . , x100) =

10∑
i=1

10∑
j=1

20∑
k=1

α17(i)aijbj(k)β18(j)

So the conditional is

p(q17 = 7, x18 = 3|x1, . . . , x17, x19, . . . , x100) =

∑10
j=1 α17(7)a7jbj(3)β18(j)∑10

i=1

∑10
j=1

∑20
k=1 α17(i)aijbj(k)β18(j)

Problem 4.3

A partially-observed Markov model is a model in which some part of the state variable is observed,
while other parts are not observed. For example, consider a model with 2 states in which q1 is observed to
be q1 = 1, and q3 is observed to be q3 = 2, but q2 is not observed. This model has no output vectors (no ~x):
your only observations are the two state IDs, q1 and q3. All parts of this problem are cumulative; in your
answer to any part, you may use any assumptions that were specified in any previous part.

(a) What is the visible dataset, Dv? What is the hidden dataset, Dh?

Solution:

Dv = {q1, q3}
Dh = {q2}
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(b) Suppose that you have a transition probability matrix A, whose (i, j)th element is

aij = p(qt = j|qt−1 = i)

Find a formula in terms of the elements of A for

γ2(j) = p(q2 = j|q1 = 1, q3 = 2, A)

Solution:
γ2(j) =

a1jaj2∑2
i=1 a1iai2

(c) The EM Q-function, also known as the expected log likelihood, can be defined as

Q(A′, A) = E [ln p(q1 = 1, q2 = j, q3 = 2|A′) | q1 = 1, q3 = 2, A]

Find a formula for Q(A′, A) in terms of the elements of A and A′, and/or in terms of γ2(j).

Solution:

Q(A′, A) =

2∑
j=1

γ2(j)
(
ln a′1j + ln a′j2

)

(d) The Lagrangian method for optimization works as follows. Suppose we are trying to find values of a′ij
that maximize Q(A′, A), subject to the stochastic constraint that

2∑
j=1

a′ij = 1

The Lagrangian method creates a Lagrangian function L(A) by creating a “constraint term” (1−
∑

j a
′
ij)

that must be zero if the constraint is satisfied, multiplying the constraint term by a “Lagrangian
multiplier” λi, and then adding the result to Q(A′, A), resulting in :

L(A′) = Q(A′, A) +

2∑
i=1

λi

1−
2∑

j=1

a′ij


In terms of the elements of A′, γ2(j), and the Lagrangian multipliers λ1 and λ2, what are the values
of dL(A′)/da′ij for each value of i, j ∈ {1, 2}?

Solution:

dL(A′)

da′11
=
γ2(1)

a′11
− λ1

dL(A′)

da′12
=

1

a′12
− λ1

dL(A′)

da′21
= −λ2

dL(A′)

da′22
=
γ2(2)

a′22
− λ2
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(e) Set dL(A′)
da′

11
= 0 and dL(A′)

da′
12

= 0. Doing so will give you the new model parameters, a′11 and a′12, in terms

of both γ2(j) and λi. Choose a value of λi so that a′11 + a′12 = 1.

Solution:

a′11 =
γ2(1)

1 + γ2(1)

a′12 =
1

1 + γ2(1)

Note: you are not asked to solve for a′21 because there’s a trick: dL/da′21 cannot be set to zero. As
long as λ2 > 0, dL/da′21 < 0. The conclusion is that you should make a′21 as small as possible, thus:

a′21 = 0

a′22 = 1


