ECE 417 Multimedia Signal Processing Solutions to Homework 2

UNIVERSITY OF ILLINOIS Department of Electrical and Computer Engineering

Assigned: Tuesday, 9/7/2021; Due: Thursday, 9/16/2021 Reading: Strang, Section 6.1

Problem 2.1

Let A be a 2×2 matrix, and let x be one of its elements. All of its other elements are known, and are given as:

$$A = \left[\begin{array}{cc} x & 3\\ -1 & 2 \end{array} \right] \tag{2.1-1}$$

The eigenvalues of A are given by

$$\lambda = -\frac{b}{2a} \pm \frac{\sqrt{b^2 - 4ac}}{2a} \tag{2.1-2}$$

for some particular values of a, b, and c. Find a, b, and c, in terms of x, such that Equation (2.1-2) gives the eigenvalues of A.

Solution:

$$a = 1$$

$$b = -(x+2)$$

$$c = 2x+3$$

Problem 2.2

Let A be a 2×2 matrix, and let x be one of its elements. All of its other elements are known, and are given as:

$$A = \begin{bmatrix} x & 3\\ -1 & 2 \end{bmatrix}$$
(2.2-1)

Suppose that you are given one of its eigenvalues, λ , and you want to find the corresponding eigenvector. As you know, the scale of an eigenvector is arbitrary, so let's arbitrarily set its first element to 1: $\vec{v} = [1, v_2]^T$. Solve for its second element, v_2 , in terms of λ .

Solution: Setting $A\vec{v} = \lambda\vec{v}$ gives two equations in one unknown: $x + 3v_2 = \lambda$, and $-1 + 2v_2 = \lambda v$. These will give the same answer if λ is an eigenvalue:

$$v_2 = \frac{\lambda - x}{3} = \frac{1}{2 - \lambda}$$

Problem 2.3

Suppose that A is a tall thin matrix (more rows than columns). Suppose that $A^{\dagger} = (A^T A)^{-1} A^T$ is its pseudo-inverse, and that $\vec{v}^* = A^{\dagger} \vec{b}$. Show that \vec{v}^* is the minimum-squared error solution to the equation $A\vec{v} \approx \vec{b}$, i.e., show that \vec{v}^* minimizes

$$E = ||A\vec{v} - b||_2^2$$

Solution:

$$E = \|A\vec{v} - \vec{b}\|_2^2$$

= $(A\vec{v} - \vec{b})^T (A\vec{v} - \vec{b})$
= $\vec{v}^T A^T A \vec{v} - 2\vec{v}^T A^T \vec{b} + \vec{b}^T \vec{b}$

Differentiating w.r.t. \vec{v} gives

$$\nabla_{\vec{v}}E = 2A^T A \vec{v} - 2A^T \vec{b}$$

Setting this to zero gives $\vec{v}^* = (A^T A)^{-1} A^T \vec{b}$.

Problem 2.4

Suppose that A is a short fat matrix (more columns than rows). Suppose that $A^{\dagger} = A^T (AA^T)^{-1}$ is its pseudo-inverse, and that $\vec{v}^* = A^{\dagger}\vec{b}$. Show that \vec{v}^* satisfies the equation $A\vec{v}^* = \vec{b}$.

Solution:

$$A\vec{v}^* = AA^T (AA^T)^{-1}\vec{b}$$
$$= \vec{b}$$