ECE 417 Multimedia Signal Processing Solutions to Homework 1

UNIVERSITY OF ILLINOIS

Department of Electrical and Computer Engineering

Assigned: Monday, 8/23/2021; Due: NOT DUE

Problem 1.1

What is h[n] if

$$H(z) = \frac{1}{(1 - e^{j0.1\pi}z^{-1})(1 - e^{-j0.1\pi}z^{-1})}$$

Solution: Using PFE, we get

$$H(z) = \frac{C_1}{1 - e^{j0.1\pi}z^{-1}} + \frac{C_1^*}{1 - e^{-j0.1\pi}z^{-1}}$$

Solving for C_1 , we can find that $C_1 = p_1/(p_1 - p_1^*) = e^{j0.1\pi}/(2j\sin(0.1\pi))$, so

$$h[n] = \left(\frac{e^{j0.1\pi(n+1)}}{2j\sin(0.1\pi)} - \frac{e^{-j0.1\pi(n+1)}}{2j\sin(0.1\pi)}\right)u[n] = \frac{\sin(0.1\pi(n+1))}{\sin(0.1\pi)}u[n]$$

Problem 1.2

Consider a second-order resonator with a resonant frequency of $F_1 = 500$ Hz and a bandwidth of $B_1 = 400$ Hz, sampled at $F_s = 16000$ samples/second. What are H(z) and h[n]?

Solution:

$$\omega_1 = \frac{2\pi F_1}{F_s} = \frac{2\pi 500}{16000} = \frac{\pi}{16}$$

$$\sigma = \frac{1}{2} \frac{2\pi B_1}{F_s} = \frac{\pi 400}{16000} = \frac{\pi}{40}$$

$$H(z) = \frac{1}{(1 - e^{-\sigma + j\omega_1} z^{-1})(1 - e^{-\sigma - j\omega_1} z^{-1})}$$

$$h[n] = \frac{1}{\sin(\omega_1)} e^{-\sigma n} \sin(\omega_1(n+1)) u[n]$$

Problem 1.3

Solutions to Homework 1 2

Suppose

$$x[n] = \frac{1}{\sin(0.3\pi)} e^{-0.1(n-6)} \sin(0.3\pi(n-5)) u[n-6]$$

Write a difference equation in which every term on the right-hand-side includes a factor of x[n-m] for some value of m, and every term on the left-hand-side includes a factor of y[n-k] for some value of k, such that your difference equation produces the output signal $y[n] = \delta[n-6]$.

Solution: This x[n] is the result of passing $y[n] = \delta[n-6]$ through a second-order resonator,

$$H(z) = \frac{1}{(1 - p_1 z^{-1})(1 - p_1^* z^{-1})}$$

where $p_1 = e^{-0.1 + j0.3\pi}$. We can get y[n] back again by passing x[n] through the inverse filter,

$$A(z) = (1 - p_1 z^{-1})(1 - p_1^* z^{-1}) = 1 - 2e^{-0.1}\cos(0.3\pi)z^{-1} + e^{-0.2}z^{-2}$$

Implementing A(z) as a difference equation, we get

$$y[n] = x[n] - 2e^{-0.1}\cos(0.3\pi)x[n-1] + e^{-0.2}x[n-2]$$

Problem 1.4

Suppose x[n] is a signal with autocorrelation coefficients R[0] = 1, R[1] = 0.5, and R[2] = 0.5. Find coefficients a_1 and a_2 that will minimize \mathcal{E} , which is defined as

$$\mathcal{E} = \sum_{n=-\infty}^{\infty} (x[n] - a_1 x[n-1] - a_2 x[n-2])^2$$

Solution: If we set $\frac{d\mathcal{E}}{da_1} = 0$ and $\frac{d\mathcal{E}}{da_2} = 0$, we get two equations in two unknowns, which can be written in matrix form as

$$\left[\begin{array}{c} R[1] \\ R[2] \end{array}\right] = \left[\begin{array}{cc} R[0] & R[1] \\ R[1] & R[0] \end{array}\right] \left[\begin{array}{c} a_1 \\ a_2 \end{array}\right]$$

We solve by inverting the matrix, which gives

$$\begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 1 & 0.5 \\ 0.5 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 0.5 \\ 0.5 \end{bmatrix} = \frac{1}{1 - (0.5)(0.5)} \begin{bmatrix} 1 & -0.5 \\ -0.5 & 1 \end{bmatrix} \begin{bmatrix} 0.5 \\ 0.5 \end{bmatrix} = \begin{bmatrix} 1/3 \\ 1/3 \end{bmatrix}$$