ECE 417 Multimedia Signal Processing Solutions to Homework 6

UNIVERSITY OF ILLINOIS
Department of Electrical and Computer Engineering

Assigned: Tuesday, 11/16/2021; Due: Tuesday, 11/30/2021

Problem 6.1

Suppose you have a recurrent neural network with input $x[n]$, target $y[n]$, output $h[n]$, and loss function:

$$
\mathcal{L}=-\frac{1}{N} \sum_{n=0}^{N-1}(y[n] \ln h[n]+(1-y[n]) \ln (1-h[n]))
$$

where

$$
\begin{aligned}
h[n] & =\sigma(\xi[n]) \\
\xi[n] & =x[n]+\sum_{m=1}^{M-1} w[m] h[n-m]
\end{aligned}
$$

and where $\sigma(\cdot)$ is the logistic sigmoid. Write $d \mathcal{L} / d w[3]$ in terms of the signals $y[n]$ and $h[m]$. You can invent partial back-prop signals if you wish, but you need to define them clearly. You may assume that $h[n]=0$ for $n<0$.

Solution: First step: forward-prop. Assume that $h[n]$ has been calculated. Second step: partial derivatives:

$$
\epsilon[n]=\frac{\partial \mathcal{L}}{\partial \xi[n]}=\frac{1}{N}(h[n]-y[n])
$$

Third step: total derivatives:

$$
\begin{aligned}
\delta[n] & =\frac{d \mathcal{L}}{d \xi[n]} \\
& =\epsilon[n]+\sum_{m=1}^{M-1} \frac{d \mathcal{L}}{d \xi[n+m]} \frac{\partial \xi[n+m]}{\partial \xi[n]} \\
& =\epsilon[n]+\sum_{m=1}^{M-1} \delta[n+m] w[m] \dot{\sigma}(\xi[n]) \\
& =\epsilon[n]+\sum_{m=1}^{M-1} \delta[n+m] w[m] h[n](1-h[n])
\end{aligned}
$$

Fourth step: weight gradient:

$$
\begin{aligned}
\frac{d \mathcal{L}}{d w[3]} & =\sum_{n=0}^{N-1} \frac{d \mathcal{L}}{d \xi[n]} \frac{\partial \xi[n]}{\partial w[3]} \\
& =\sum_{n=0}^{N-1} \delta[n] h[n-3]
\end{aligned}
$$

Problem 6.2

Suppose that

$$
\begin{aligned}
h_{0} & =x^{3} \\
h_{1} & =\cos (x)+\sin \left(h_{0}\right) \\
\hat{y} & =\frac{1}{2}\left(h_{1}^{2}+h_{0}^{2}\right)
\end{aligned}
$$

What is $d \hat{y} / d x$? Express your answer as a function of x only, without the variables h_{0} or h_{1} in your answer.

Solution:

$$
\begin{aligned}
\frac{d h_{0}}{d x} & =3 x^{2} \\
\frac{d h_{1}}{d x} & =\frac{\partial h_{1}}{d x}+\frac{d h_{0}}{d x} \frac{\partial h_{1}}{\partial h_{0}} \\
& =-\sin (x)+3 x^{2} \cos \left(x^{3}\right) \\
\frac{d \hat{y}}{d x} & =\frac{d h_{0}}{d x} \frac{\partial \hat{y}}{\partial h_{0}}+\frac{d h_{1}}{d x} \frac{\partial \hat{y}}{\partial h_{1}} \\
& =h_{0}\left(3 x^{2}\right)+h_{1}\left(-\sin (x)+3 x^{2} \cos \left(x^{3}\right)\right) \\
& =3 x^{5}+\left(\cos (x)+\sin \left(x^{3}\right)\right)\left(-\sin (x)+3 x^{2} \cos \left(x^{3}\right)\right)
\end{aligned}
$$

Problem 6.3

Consider a one-gate recurrent neural net, defined as follows:

$$
\begin{aligned}
c[n] & =c[n-1]+w_{c} x[n]+u_{c} h[n-1]+b_{c} \\
h[n] & =o[n] c[n] \\
o[n] & =\sigma\left(w_{o} x[n]+u_{o} h[n-1]+b_{o}\right)
\end{aligned}
$$

where $\sigma(\cdot)$ is the logistic sigmoid, $x[n]$ is the network input, $c[n]$ is the cell, $o[n]$ is the output gate, and and $h[n]$ is the output. Suppose that you've already completed synchronous back-prop, which has given you the following quantity:

$$
\epsilon[n]=\frac{\partial \mathcal{L}}{\partial h[n]}
$$

Find asynchronous back-prop formulas, i.e., find formulas for the following quantities, in terms of one another, and/or in terms of the other quantities defined above:

$$
\begin{aligned}
\delta_{h}[n] & =\frac{d \mathcal{L}}{d h[n]} \\
\delta_{o}[n] & =\frac{d \mathcal{L}}{d o[n]} \\
\delta_{c}[n] & =\frac{d \mathcal{L}}{d c[n]}
\end{aligned}
$$

Solution:

$$
\begin{aligned}
\delta_{h}[n] & =\epsilon[n]+\delta_{c}[n+1] u_{c}+\delta_{o}[n+1] \dot{\sigma}\left(w_{o} x[n+1]+u_{o} h[n]+b_{1}\right) u_{o} \\
& =\epsilon[n]+\delta_{c}[n+1] u_{c}+\delta_{o}[n+1] o[n+1](1-o[n+1]) u_{o} \\
\delta_{o}[n] & =\delta_{h}[n] c[n] \\
\delta_{c}[n] & =\delta_{c}[n+1]+\delta_{h}[n+1] o[n]
\end{aligned}
$$

Problem 6.4

Using the CReLU nonlinearity for both σ_{h} and σ_{g} in an LSTM, choose weights and biases,

$$
\left\{b_{c}, u_{c}, w_{c}, b_{f}, u_{f}, w_{f}, b_{i}, u_{i}, w_{i}, b_{o}, u_{o}, w_{o}\right\}
$$

that will cause an LSTM to count the number of nonzero inputs, and output the tally only when the input is zero:

$$
h[n]= \begin{cases}\sum_{m=0}^{n} \mathbf{1}[x[m] \geq 1] & x[n]=0 \\ 0 & x[n] \geq 1\end{cases}
$$

where $\mathbf{1}[\cdot]$ is the unit indicator function, and you may assume that $x[n]$ is always a non-negative integer.
Solution: First, we only want to generate output when $x[n]=0$, so

$$
o[n]=\operatorname{CReLU}(x[n]), \quad \Rightarrow \quad b_{o}=1, w_{o}=-1, u_{o}=0
$$

Second, we want $c[n]$ to increase by exactly 1 , every time $x[n] \geq 1$, i.e.,

$$
c[n]=c[n-1]+\operatorname{CReLU}(x[n])
$$

but we know that $c[n]$ is defined to be

$$
c[n]=i[n] \operatorname{CReLU}\left(w_{c} x[n]+u_{c} h[n-1]+b_{c}\right)+f[n] c[n-1]
$$

so we want $i[n]=1$ always, $f[n]=1$ always, and

$$
w_{c}=1, u_{c}=0, b_{c}=0
$$

Putting it all together, we have

$$
\left\{b_{c}=0, u_{c}=0, w_{c}=1, b_{f}=1, u_{f}=0, w_{f}=0, b_{i}=1, u_{i}=0, w_{i}=0, b_{o}=0, u_{o}=0, w_{o}=1\right\}
$$

