ECE 417 Multimedia Signal Processing Homework 5

UNIVERSITY OF ILLINOIS
Department of Electrical and Computer Engineering

Assigned: Wednesday, 11/3/2021; Due: Tuesday, 11/9/2021
Reading: Christopher Bishop, Neural Networks for Pattern Recognition, chapters 3-4

Problem 5.1

A "spiral network" is a brand new category of neural network, invented just for this homework. It is a network with a scalar input variable x_{i}, a scalar target variable y_{i}, and with the following architecture:

$$
h_{i, j}=\left\{\begin{array}{ll}
x_{i} & j=1 \\
g\left(\xi_{i, j}\right) & 2 \leq j \leq M
\end{array} \quad, \quad \xi_{i, j}=\sum_{k=1}^{j-1} w_{j, k} h_{i, k}\right.
$$

Suppose that the network is trained to minimize the sum of the per-token squared errors $\mathcal{E}=\frac{1}{2} \sum_{i=1}^{n}\left(h_{i, M}-\right.$ $\left.y_{i}\right)^{2}$. The error gradient can be written as

$$
\frac{\partial \mathcal{E}}{\partial w_{j, k}}=\sum_{i=1}^{n} \delta_{i, j} h_{i, k}
$$

Find a formula that can be used to compute $\delta_{i, j}$, for all $2 \leq j \leq M$, in terms of $y_{i}, h_{i j}=g\left(\xi_{i j}\right)$, and/or $g^{\prime}\left(\xi_{i j}\right)=\frac{d g}{d \xi_{i j}}$.

Problem 5.2

The back-prop of a convolution layer is correlation. What about if correlation is the forward-prop rule? Let's find out. Consider a "correlational" layer, given as follows, where $h\left[m_{1}, m_{2}\right]$ is the hidden node activation of the previous layer, and $w\left[m_{1}, m_{2}\right]$ are the network weights:

$$
\begin{aligned}
\xi\left[n_{1}, n_{2}\right] & =w\left[-n_{1},-n_{2}\right] * h\left[n_{1}, n_{2}\right] \\
& =\sum_{m_{1}} \sum_{m_{2}} w\left[m_{1}-n_{1}, m_{2}-n_{2}\right] h\left[m_{1}, m_{2}\right]
\end{aligned}
$$

Suppose the loss, \mathcal{L}, is some function whose derivatives with respect to $\xi\left[n_{1}, n_{2}\right], \delta\left[n_{1}, n_{2}\right]=\frac{d \mathcal{L}}{d \xi\left[n_{1}, n_{2}\right]}$, are known. Find $\frac{d \mathcal{L}}{d h\left[m_{1}, m_{2}\right]}$ and $\frac{d \mathcal{L}}{d w\left[k_{1}, k_{2}\right]}$ in terms of $\delta\left[n_{1}, n_{2}\right]$.

Problem 5.3

Consider the following nonlinearity, which might be appropriate at the output layer of a classifier. This nonlinearity is sometimes called the "softcount" nonlinearity, and is closely related to the more common "softmax." The softmax and softcount share the following property: the input, $\vec{\xi}$, and output, \vec{h} are both
assumed to be vectors, $\vec{\xi}=\left[\xi_{1}, \ldots, \xi_{N_{Y}}\right]^{T}$ and $\vec{h}=\left[h_{1}, \ldots, h_{N_{Y}}\right]^{T}$. The $k^{\text {th }}$ output of the nonlinearity depends on all of the inputs, not just on the $k^{\text {th }}$ input:

$$
h_{k}=g_{k}(\vec{\xi})=\frac{e^{\xi_{k}}}{\max _{1 \leq \ell \leq N_{Y}} e^{\xi_{\ell}}}
$$

Suppose that the training target, y, is an integer, $1 \leq y \leq N_{Y}$, and the loss is the categorical cross-entropy function:

$$
\mathcal{L}=-\sum_{k=1}^{N_{Y}} \mathbb{1}[y=k] \ln h_{k}
$$

where

$$
\mathbb{1}[P]= \begin{cases}1 & P \text { is true } \\ 0 & \text { otherwise }\end{cases}
$$

Find $\frac{d \mathcal{L}}{d \xi_{k}}$, for each of the following four cases:
(a) $k=y$ and $k=\operatorname{argmax}_{\ell} e^{\xi_{\ell}}$
(b) $k=y$ but $k \neq \operatorname{argmax}_{\ell} e^{\xi_{\ell}}$
(c) $k \neq y$ but $k=\operatorname{argmax}_{\ell} e^{\xi_{\ell}}$
(d) $k \neq y$ and $k \neq \operatorname{argmax}_{\ell} e^{\xi_{\ell}}$

Express your answer in terms of h_{ℓ}, for any $1 \leq \ell \leq N_{Y}$ including possibly $\ell=k, \ell=y$, or $\ell=\operatorname{argmax} e^{\xi_{\ell}}$. Do not express your answer in terms of ξ_{k}.

Problem 5.4

Consider a two-layer regression network with N_{x} input nodes, N_{h} hidden nodes, and N_{y} output nodes:

$$
\begin{equation*}
\vec{f}(\vec{x})=W^{(2)} \sigma\left(W^{(1)} \vec{x}\right) \tag{5.4-1}
\end{equation*}
$$

Suppose that there are N_{i} training tokens, $\mathcal{D}=\left\{\left(\vec{x}_{1}, \vec{y}_{i}\right), \ldots,\left(\vec{x}_{N_{i}}, y_{N_{i}}\right)\right\}$, and the loss is mean-squared error:

$$
\begin{equation*}
\mathcal{L}=\frac{1}{N_{i}} \sum_{i=1}^{N_{i}}\left\|\vec{f}\left(\vec{x}_{i}\right)-\vec{y}_{i}\right\|_{2}^{2} \tag{5.4-2}
\end{equation*}
$$

- How many multiply-accumulate operations are required to calculate the gradients $\nabla_{W^{(2)}} \mathcal{L}$ and $\nabla_{W^{(2)}} \mathcal{L}$ using forward-propagation and back-propagation?
- Suppose you attempted to find these gradients using a forward-Euler approximation,

$$
\begin{equation*}
\frac{\partial \mathcal{L}}{\partial w_{k, j}^{(l)}} \approx \frac{1}{\epsilon}\left(\mathcal{L}\left(w_{k, j}^{(l)}+\epsilon\right)-\mathcal{L}\left(w_{k, j}^{(1)}\right)\right) \tag{5.4-3}
\end{equation*}
$$

for some suitably small value of ϵ. How many multiply-accumulate operations would be required to compute $\nabla_{W^{(2)}} \mathcal{L}$ and $\nabla_{W^{(2)}} \mathcal{L}$ using Eq. (5.4-3)?

