ECE 417 Multimedia Signal Processing Homework 4

UNIVERSITY OF ILLINOIS

Department of Electrical and Computer Engineering

Assigned: Tuesday, 10/12/2021; Due: Tuesday, 10/19/2021 Reading: L.R. Rabiner, A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition, 1989

Problem 4.1

In a first-order Markov model, the state at time t depends only on the state at time t-1. A **second-order Markov model** is a model in which the state at time t depends on a short list of recent states. For example, consider a model in which q_t depends on the most recent **two** frames. Let's suppose the model is fully defined by the following three types of parameters:

- Initial segment probability: $\pi_{ij} \equiv p(q_1 = i, q_2 = j | \Lambda)$
- Transition probability: $a_{ijk} \equiv p(q_t = k | q_{t-1} = j, q_{t-2} = i, \Lambda)$
- Observation probability: $b_k(\vec{x}) \equiv p(\vec{x}_t = \vec{x}|q_t = k, \Lambda)$

Design an algorithm similar to the forward algorithm that is able to compute $p(X|\Lambda)$ with a computational complexity of at most $\mathcal{O}\left\{TN^3\right\}$. Provide a proof that your algorithm has at most $\mathcal{O}\left\{TN^3\right\}$ complexity—this can be an informal proof in the form of a bullet list, as was provided during lecture 12 for the standard forward algorithm.

Problem 4.2

Suppose you have a sequence of T = 100 consecutive observations, $X = [x_1, ..., x_T]$. Suppose that the observations are discrete, $x_t \in \{1, ..., 20\}$. You have it on good information that these data can be modeled by an HMM with N = 10 states, whose parameters are

- Initial state probability: $\pi_i \equiv p(q_1 = i | \Lambda)$
- Transition probability: $a_{ij} \equiv p(q_t = j | q_{t-1} = i, \Lambda)$
- Observation probability: $b_i(x) \equiv p(x_t = x | q_t = j, \Lambda)$

In terms of these model parameters, and in terms of the forward probabilities $\alpha_t(i)$ and backward probabilities $\beta_t(i)$ (for any values of i, j, t, x that are useful to you), what is $p(q_{17} = 7, x_{18} = 3 | x_1, \dots, x_{17}, x_{19}, \dots, x_{100}, \Lambda)$?

Problem 4.3

A partially-observed Markov model is a model in which some part of the state variable is observed, while other parts are not observed. For example, consider a model with 2 states in which q_1 is observed to be $q_1 = 1$, and q_3 is observed to be $q_3 = 2$, but q_2 is not observed. This model has no output vectors (no \vec{x}): your only observations are the two state IDs, q_1 and q_3 . All parts of this problem are cumulative; in your answer to any part, you may use any assumptions that were specified in any previous part.

Homework 4

- (a) What is the visible dataset, \mathcal{D}_v ? What is the hidden dataset, \mathcal{D}_h ?
- (b) Suppose that you have a transition probability matrix A, whose $(i,j)^{\text{th}}$ element is

$$a_{ij} = p(q_t = j | q_{t-1} = i)$$

Find a formula in terms of the elements of A for

$$\gamma_2(j) = p(q_2 = j|q_1 = 1, q_3 = 2, A)$$

(c) The EM Q-function, also known as the expected log likelihood, can be defined as

$$Q(A', A) = E \left[\ln p(q_1 = 1, q_2 = j, q_3 = 2 | A') \mid q_1 = 1, q_3 = 2, A \right]$$

Find a formula for Q(A', A) in terms of the elements of A and A', and/or in terms of $\gamma_2(j)$.

(d) The Lagrangian method for optimization works as follows. Suppose we are trying to find values of a'_{ij} that maximize Q(A', A), subject to the stochastic constraint that

$$\sum_{i=1}^{2} a'_{ij} = 1$$

The Lagrangian method creates a Lagrangian function L(A) by creating a "constraint term" $(1-\sum_j a'_{ij})$ that must be zero if the constraint is satisfied, multiplying the constraint term by a "Lagrangian multiplier" λ_i , and then adding the result to Q(A',A), resulting in :

$$L(A') = Q(A', A) + \sum_{i=1}^{2} \lambda_i \left(1 - \sum_{j=1}^{2} a'_{ij} \right)$$

In terms of the elements of A', $\gamma_2(j)$, and the Lagrangian multipliers λ_1 and λ_2 , what are the values of $dL(A')/da'_{ij}$ for each value of $i, j \in \{1, 2\}$?

(e) Set $\frac{dL(A')}{da'_{11}} = 0$ and $\frac{dL(A')}{da'_{12}} = 0$. Doing so will give you the new model parameters, a'_{11} and a'_{12} , in terms of both $\gamma_2(j)$ and λ_i . Choose a value of λ_i so that $a'_{11} + a'_{12} = 1$.