ECE 417 Multimedia Signal Processing Homework 3

UNIVERSITY OF ILLINOIS Department of Electrical and Computer Engineering

Assigned: Tuesday, 9/28/2021; Due: Tuesday, 10/5/2021Reading: , Sections 1-3

Problem 3.1

Suppose $\vec{X} = [X_1, X_2]^T$ is a Gaussian random vector with mean and covariance given by

$$\vec{\mu} = \begin{bmatrix} 1\\ 0 \end{bmatrix}, \quad \Sigma = \begin{bmatrix} 9 & 0\\ 0 & 4 \end{bmatrix}$$

Sketch the set of points such that $f_{\vec{X}}(\vec{x}) = \frac{1}{12\pi}e^{-\frac{1}{8}}$, where $f_{\vec{X}}(\vec{x})$ is the pdf of \vec{X} .

Problem 3.2

Suppose $\vec{X} = [X_1, X_2]^T$ is a Gaussian random vector with mean and covariance given by

$$\vec{\mu} = \begin{bmatrix} 1\\0 \end{bmatrix}, \quad \Sigma = \begin{bmatrix} 9 & 0\\0 & 4 \end{bmatrix}$$

Define $\Phi(z)$ as follows:

$$\Phi(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}u^2} du$$

In terms of $\Phi(z)$, find the probability $\Pr\{-1 < X_1 < 1, -1 < X_2 < 1\}$.

Problem 3.3

Suppose that, for a particular classification problem, the observations are $\vec{x} \in \Re^2$, and the labels are $y \in \{0, 1\}$. It just so happens that the correct label of every data point is as follows:

$$y^*(\vec{x}) = \begin{cases} 1 & \|\vec{x}\|_2 > 1.5\\ 0 & \|\vec{x}\|_2 < 1.5 \end{cases}$$
(3.3-1)

Unfortunately, you aren't allowed to use the correct labeling function. Instead, are required to learn a Gaussian classifier with the following form:

$$\hat{y}(\vec{x}) = \begin{cases} 1 & \frac{p_{\vec{X}|Y}(\vec{x}|1)}{p_{\vec{X}|Y}(\vec{x}|0)} > \eta \\ 0 & \frac{p_{\vec{X}|Y}(\vec{x}|1)}{p_{\vec{X}|Y}(\vec{x}|0)} < \eta \end{cases}$$
(3.3-2)

where η is a parameter called the likelihood ratio threshold, and where the probability models for for both classes are zero-mean Gaussians, with different covariance matrices Σ_0 and Σ_1 :

$$p_{\vec{X}|Y}(\vec{x}|y) = \mathcal{N}\left(\vec{x}|\vec{\mu} = \begin{bmatrix} 0\\0 \end{bmatrix}, \Sigma_y\right)$$
(3.3-3)

Suppose that Σ_0 and Σ_1 are known to be the identity matrix, and the scaled identity matrix, respectively:

$$\Sigma_0 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad \Sigma_1 = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$

Find a value of η so that the Gaussian classifier (Eq. (3.3-2)) gives exactly the same decision boundary as the correct decision rule (Eq. (3.3-1)).

Problem 3.4

Suppose you have a scalar random variable X, with training examples $[x_1, x_2, x_3, x_4] = [-1, 0, 1, 2]$. You want to try to model these data using a Gaussian mixture model, with the form

$$p_X(x) = \sum_{k=0}^{1} c_k \mathcal{N}(x|\mu_k, \sigma_k^2)$$
(3.4-1)

You have initial parameter estimates $\mu_0 = 0$, $\mu_1 = 1$, $\sigma_0^2 = \sigma_1^2 = 1$, and $c_0 = c_1 = 0.5$. Perform one iteration of EM training. What are the new values of μ_0 , μ_1 , Σ_0 and Σ_1 , after one round of EM training? Write your answer in terms of the normal probability density functions $\mathcal{N}(x|\mu, \sigma^2)$, for numerical values of x, μ and σ^2 .