ECE 417 Multimedia Signal Processing Homework 3

UNIVERSITY OF ILLINOIS
Department of Electrical and Computer Engineering

Assigned: Tuesday, 9/28/2021; Due: Tuesday, 10/5/2021 Reading: , Sections 1-3

Problem 3.1

Suppose $\vec{X}=\left[X_{1}, X_{2}\right]^{T}$ is a Gaussian random vector with mean and covariance given by

$$
\vec{\mu}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad \Sigma=\left[\begin{array}{ll}
9 & 0 \\
0 & 4
\end{array}\right]
$$

Sketch the set of points such that $f_{\vec{X}}(\vec{x})=\frac{1}{12 \pi} e^{-\frac{1}{8}}$, where $f_{\vec{X}}(\vec{x})$ is the pdf of \vec{X}.

Problem 3.2

Suppose $\vec{X}=\left[X_{1}, X_{2}\right]^{T}$ is a Gaussian random vector with mean and covariance given by

$$
\vec{\mu}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad \Sigma=\left[\begin{array}{ll}
9 & 0 \\
0 & 4
\end{array}\right]
$$

Define $\Phi(z)$ as follows:

$$
\Phi(z)=\int_{-\infty}^{z} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} u^{2}} d u
$$

In terms of $\Phi(z)$, find the probability $\operatorname{Pr}\left\{-1<X_{1}<1,-1<X_{2}<1\right\}$.

Problem 3.3

Suppose that, for a particular classification problem, the observations are $\vec{x} \in \Re^{2}$, and the labels are $y \in\{0,1\}$. It just so happens that the correct label of every data point is as follows:

$$
y^{*}(\vec{x})=\left\{\begin{array}{cc}
1 & \|\vec{x}\|_{2}>1.5 \tag{3.3-1}\\
0 & \|\vec{x}\|_{2}<1.5
\end{array}\right.
$$

Unfortunately, you aren't allowed to use the correct labeling function. Instead, are required to learn a Gaussian classifier with the following form:

$$
\hat{y}(\vec{x})= \begin{cases}1 & \frac{p_{\vec{X} \mid Y}(\vec{x} \mid 1)}{p_{\vec{X} \mid Y}(\vec{x} \mid 0)}>\eta \tag{3.3-2}\\ 0 & \frac{p_{\vec{X} \mid Y}(\vec{x} \mid 1)}{p_{\vec{X} \mid Y}(\vec{x} \mid 0)}<\eta\end{cases}
$$

where η is a parameter called the likelihood ratio threshold, and where the probability models for for both classes are zero-mean Gaussians, with different covariance matrices Σ_{0} and Σ_{1} :

$$
p_{\vec{X} \mid Y}(\vec{x} \mid y)=\mathcal{N}\left(\vec{x} \left\lvert\, \vec{\mu}=\left[\begin{array}{l}
0 \tag{3.3-3}\\
0
\end{array}\right]\right., \Sigma_{y}\right)
$$

Suppose that Σ_{0} and Σ_{1} are known to be the identity matrix, and the scaled identity matrix, respectively:

$$
\Sigma_{0}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad \Sigma_{1}=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]
$$

Find a value of η so that the Gaussian classifier (Eq. $3.3-2$) gives exactly the same decision boundary as the correct decision rule (Eq. (3.3-1)).

Problem 3.4

Suppose you have a scalar random variable X, with training examples $\left[x_{1}, x_{2}, x_{3}, x_{4}\right]=[-1,0,1,2]$. You want to try to model these data using a Gaussian mixture model, with the form

$$
\begin{equation*}
p_{X}(x)=\sum_{k=0}^{1} c_{k} \mathcal{N}\left(x \mid \mu_{k}, \sigma_{k}^{2}\right) \tag{3.4-1}
\end{equation*}
$$

You have initial parameter estimates $\mu_{0}=0, \mu_{1}=1, \sigma_{0}^{2}=\sigma_{1}^{2}=1$, and $c_{0}=c_{1}=0.5$. Perform one iteration of EM training. What are the new values of $\mu_{0}, \mu_{1}, \Sigma_{0}$ and Σ_{1}, after one round of EM training? Write your answer in terms of the normal probability density functions $\mathcal{N}\left(x \mid \mu, \sigma^{2}\right)$, for numerical values of x, μ and σ^{2}.

