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Signal Processing and Linear Prediction

s[n] = Gx[n] +

N∑
m=1

ams[n−m] = h[n] ∗ x[n]

H(z) =
G

1−
∑N
m=1 amz

−m
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G∏N
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)2
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(
s[n]−

p∑
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)
s[n− k], 1 ≤ k ≤ p

~γ = R~a

Image Interpolation

y[n1, n2] =

{
x
[
n1

U ,
n2

U

]
n1

U ,
n2

U both integers

0 otherwise

z[n1, n2] = h[n1] ∗1 (h[n2] ∗2 y[n1, n2])

hrect[n] =

{
1 0 ≤ n < U

0 otherwise
, htri[n] =

{
1− |n|U −U ≤ n ≤ U
0 otherwise

, hsinc[n] =
sin(πn/U)

πn/U

Optical Flow

−∂f
∂t

= (∇f)T~v

~v = (ATA)−1AT~b

Gaussians, GMMS, and Principal Components

p ~X(~x) =

K−1∑
k=0

ck
1

(2π)D/2|Σ|1/2
e−

1
2 (~x−~µk)T Σ−1

k (~x−~µk)

(n− 1)Σ = V ΛV T ,
1

n− 1
Λ = V TΣV, V TV = V V T = I
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d=1

σ2
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1

n− 1
trace

(
XTX

)
=

1

n− 1
trace

(
Y TY

)
=

1

n− 1

D∑
d=1

λd

LSTM

~f [t] = σ(uf~x[t] +wf~h[t− 1] + bf ), ~i[t] = σ(ui~x[t] +wi~h[t− 1] + bi), ~o[t] = σ(uo~x[t] +wo~h[t− 1] + bo)

~c[t] = ~f [t]~c[t− 1] +~i[t]g
(
uc~x[t] + wc~h[t− 1] + bc

)
, ~h[t] = ~o[t]~c[t]
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Expectation Maximization and Hidden Markov Models

Q(Θ, Θ̂) = E
[
ln p(Dv,Dh|Θ)

∣∣∣Dv, Θ̂]

αt(j) =

N∑
i=1

αt−1(i)aijbj(~xt), 1 ≤ j ≤ N, 2 ≤ t ≤ T

βt(i) =

N∑
j=1

aijbj(~xt+1)βt+1(j), 1 ≤ i ≤ N, 1 ≤ t ≤ T − 1

γt(i) =
αt(i)βt(i)∑N
k=1 αt(k)βt(k)

ξt(i, j) =
αt(i)aijbj(~xt+1)βt+1(j)∑N

k=1

∑N
`=1 αt(k)ak`b`(~xt+1)βt+1(`)

a′ij =

∑T−1
t=1 ξt(i, j)∑N

j=1

∑T−1
t=1 ξt(i, j)

Σ′i =

∑T
t=1 γt(i)(~xt − ~µi)(~xt − ~µi)T∑T

t=1 γt(i)

~µ′i =

∑T
t=1 γt(i)~xt∑T
t=1 γt(i)

Neural Nets

ξ
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dL
dξ
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= ġ(ξ
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dL
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(`)
i,k

dL
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(`−1)
i,j

=
∑
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dL
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=
∑
i

dL
dξ
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i,k

h
(`−1)
i,j

σ̇(x) = σ(x)(1− σ(x))

w
(`)
k,j ← w

(`)
k,j − η

dE

dw
(`)
k,j
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1. (17 points) A particular signal, x[n], has an autocorrelation function whose first two samples are:

R0 = E
[
x2[n]

]
R1 = E [x[n]x[n− 1]]

Suppose we want to model the signal spectrum as

|X(ω)| ≈ G

|1− ae−jω|

where G, R0, and R1 are arbitrary constants. Write a as a function of G, R0, and/or R1.

Solution: We can find the LPC coefficients using

~γ = R~a

where

R =

 Rxx[0] · · · Rxx[p− 1]
...

. . .
...

Rxx[p− 1] · · · Rxx[0]

 , ~γ =

 Rxx[1]
...

Rxx[p]


In this case, p = 1, so we have

Rxx[1] = Rxx[0]a

Therefore a = Rxx[1]/Rxx[0] = R1/R0.

Page 4



2. (17 points) In a particular 2 × 2 block of pixels, the image gradient ∇x[n1, n2] and the temporal
rate of change ∂x

∂t are given by the following table, where a, . . . , l are arbitrary constants:

(n1, n2) ∂x[n1,n2,t]
∂n1

∂x[n1,n2,t]
∂n2

∂x[n1,n2,t]
∂t

(0,0) a e i
(0,1) b f j
(1,0) c g k
(1,1) d h l

Suppose that we want to model the video using optical flow, i.e.,

x[n1 + v1, n2 + v2, t] ≈ x[n1, n2, t] (1)

Find v1 and v2 so that the approximation in Eq. (1) is satisfied, for all four pixels of the im-
age, with minimum mean-squared error. Your answer can include unresolved matrix multiplica-
tions, matrix inversions, determinants and so on, but it should not include any variables other than
a, b, c, d, e, f, g, h, i, j, k, l.

Solution: The optical flow equation is

−∂x
∂t

=
∂x

∂n1
v1 +

∂x

∂n2
v2 (2)

Approximately satisfying Eq. (1) for all four pixels in the image simultaneously would give
a e
b f
c g
d h

[ v1

v2

]
≈ −


i
j
k
l


The error in Eq. (1) is minimized by the pseudo-inverse, i.e.,

[
v1

v2

]
= −



a e
b f
c g
d h


T 

a e
b f
c g
d h



−1 

a e
b f
c g
d h


T 

i
j
k
l
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3. (17 points) The gram matrix of a dataset is the matrix whose (i, j)th element is ~xTi ~xj , the inner prod-
uct of ~xi and ~xj . A particular dataset has a gram matrix with the following eigenvector/eigenvalue
decomposition:

G =


−0.19 −0.22
−0.33 −0.49
−0.52 0.15
−0.34 0.77
−0.68 −0.29
0.04 −0.04


[

20 0
0 45

] [
−0.19 −0.33 −0.52 −0.34 −0.68 0.04
−0.22 −0.49 0.15 0.77 −0.29 −0.04

]

Suppose that Σ is the sample covariance of the same dataset, and suppose that Σ =

[
σ2

1 0
0 σ2

2

]
.

Draw the set of points {~x : ~xTΣ−1~x = 1}. Specify the numerical value of the coordinate of every
point where this set intersects the axes.

Solution: The drawing should be an ellipse centered at (0, 0), intersecting the axes at (2, 0),
(−2, 0), (0, 3), and (0,−3).
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4. (17 points) Suppose you are studying the running behaviors of trained vs. untrained athletes. You
have a sequence of feature vectors ~xt, where t is time (measured in centiseconds) and ~xt is a vector
of features computed from a motion sensor being worn at the ankle. You have trained a neural
network to compute bj(~xt) = p(~xt|qt = j), where qt ∈ {1 = heel strike, 2 = roll, 3 = lift, 4 = swing}
denotes the gait phase. You also know the following probabilities:

ai,j = p(qt = j|qt−1 = i)

αt(i) = p(~x1, . . . , ~xt, qt = i)

βt(i) = p(~xt+1, . . . , ~xT |qt = i)

Your goal is to identify all of the instants when the heel first touches the ground, i.e., at each time
step τ (1 ≤ τ ≤ T ), you want to find

PHS(τ) = p(qτ−1 = 4, qτ = 1|~x1, . . . , ~xT )

Write a formula for PHS(τ) in terms of αt(i), βt(i), ai,j , and bi(~xt), for any values of i, j, t that you
find useful.

Solution:

PHS(τ) =
ατ−1(4)a4,1b1(~xτ )βτ (1)∑4

i=1

∑4
j=1 ατ−1(i)ai,jbj(~xτ )βτ (j)
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5. (17 points) In a neural network with residual connections (ResNet), the kth activation at layer `,

h
(`)
k , is equal to the activation of the same node at the previous layer, plus a computed residual

g(ξ
(`)
k ):

ξ
(`)
k =

N∑
j=1

w
(`)
k,jh

(`−1)
j , 1 ≤ k ≤ N,

h
(`)
k = h

(`−1)
k + g

(
ξ

(`)
k

)
, 1 ≤ k ≤ N,

where g(·) is a scalar nonlinearity, and w
(`)
k,j is a network weight. Suppose that the training loss is

L, and suppose you already know dL
dh

(`)
k

. Find dL
dh

(`−1)
j

in terms of dL
dh

(`)
k

, ġ(ξ) = ∂g

∂ξ
(`)
k

, and w
(`)
k,j .

Solution: The total derivative rule gives us

dL
dh

(`−1)
j

=

N∑
k=1

dL
dh

(`)
k

∂h
(`)
k

∂h
(`)
j

=
dL
dh

(`)
j

+

N∑
k=1

dL
dh

(`)
k

ġ(ξ
(`)
k )w

(`)
k,j
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6. (17 points) An RBF-softmax is similar to a regular softmax nonlinearity, but instead of being a
generalization of the logistic sigmoid, it is a generalization of a nonlinearity called a radial basis
function (RBF), which is a kind of simplified Gaussian. An RBF-softmax has the following form:

ŷk =
wke

−‖~x−~µk‖2∑N
`=1 w`e

−‖~x−~µ`‖2
,

where ~x = [x1, . . . , xD]T is the input vector, ŷk is the kth output, and wk and ~µk = [µ1,k, . . . , µD,k]T ,
for 1 ≤ k ≤ K, are trainable parameters.

Find dŷk
dwj

for all j ∈ {1, . . . ,K}. Your answer may contain any of the variables used in the problem

statement. Your answer should not include any unresolved derivatives.

Solution:

dŷk
dwj

=
e−‖~x−~µk‖2∑N

`=1 w`e
−‖~x−~µ`‖2

1 [k = j]− e−‖~x−~µk‖2(∑N
`=1 w`e

−‖~x−~µ`‖2
)2 e

−‖~x−~µj‖2

=

{
1
wk
ŷk(1− ŷk) k = j

− 1
wk
ŷkŷj otherwise
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7. (17 points) A particular CNN has a grayscale image input, x[n1, n2], and a one-channel output:

ξ[n1, n2] = w[n1, n2] ∗ x[n1, n2],

where ∗ denotes convolution. The output is then max-pooled over the entire image:

ŷ = max
0≤n1<N1

max
0≤n2<N2

ξ[n1, n2]

Suppose the weights and the input image are given by

w[n1, n2] =

{
e−(n2

1+n2
2) −3 ≤ n1 ≤ 3, − 3 ≤ n2 ≤ 3

0 otherwise

x[n1, n2] =

{
e−((n1−15)2+(n2−12)2) 0 ≤ n1 ≤ 63, 0 ≤ n2 ≤ 63

0 otherwise

What is dŷ
dw[2,1]? Your answer should be an explicit function of numerical constants; there should

not be any variables in your answer.

Solution:
dŷ

dw[2, 1]
= e−5
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8. (17 points) Sometimes, it’s not obvious, in advance, what loss function should be used to train a
neural network. For example, suppose that we have a training database containing vector triples of
the form (~x, ~y, ~z). Suppose we know that the set of vectors, ~x, can be divided in half through the
origin such that for half of the vectors, ~y is a linear transformation of ~x, while for the other half, ~z
is a linear transformation of ~x. In other words, for some matrices Uideal and Videal that we don’t
know, and for some vector ~wideal that we don’t know:

• If ~wTideal~x ≥ 0 then ~y = Uideal~x.

• If ~wTideal~x < 0 then ~z = Videal~x.

Devise a differentiable non-negative loss function, L, that will approach zero as the estimated values
of ~w,U , and V approach their true values. Write your loss as a function of the estimated parameters
~w,U , and V , and as a function of the vectors in just one data triple, (~x, ~y, ~z).

Solution: First, we want differentiable functions of U and V that will be minimized when
~y = U~x and ~z = V ~x. Most of the functions that do this are norms of the vectors (~y − U~x) and
(~z − V ~x), for example, the squared L2 norms, ‖~y − U~x‖2 and ‖~z − V ~x‖2, are good choices.

Second, we want to multiply ‖~y−U~x‖2 by some modifier that goes to zero when ~wT~x < 0. The
unit step function would do the trick, but it’s not differentiable; we need something that can be
differentiated. The ReLU nonlinearity will do the trick:

L = ReLU(~wT~x)‖~y − U~x‖2 + ReLU(−~wT~x)‖~z − V ~x‖2

The sigmoid is also a good choice. It doesn’t go to zero immediately when ~wT~x < 0, but it goes
to zero when ~wT~x� 0. Since the problem specification doesn’t actually dictate the norm of ~w
(it can be any scalar times ~wideal, and still meet the problem specifications), the sigmoid will
also work here:

L = σ(~wT~x)‖~y − U~x‖2 + σ(−~wT~x)‖~z − V ~x‖2
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9. (17 points) Suppose y is a scalar continuous piece-wise linear function of the scalar variable x, with

dy

dx
=


0 x < x0

si xi ≤ x < xi+1, 0 ≤ i < N

sN xN ≤ x

This function, y(x), can be exactly represented by a ReLU neural network of the form

y(x) =

N∑
i=0

wiReLU(x+ bi)

Find wi and bi, for all 0 ≤ i ≤ N , in terms of sj and xj , for any 0 ≤ j ≤ N that you find to be
useful.

Solution: We know that

ReLU(x+ bi) =

{
x+ bi x+ bi > 0

0 otherwise

So we can get the breakpoints exactly right by setting

bi = −xi

Setting the slopes equal, we get that

si =

i∑
j=0

wj

which can be inverted to find that

w0 = s0

wi = si − si−1, 1 ≤ i ≤ N
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10. (17 points) Suppose we have five variables, u, v, w, x, y. All but seven of their partial derivatives are
zero; for example, ∂y∂u (u, v, w, x, y) = ∂y

∂x (u, v, w, x, y) = 0. The only seven nonzero partial derivatives
are

∂u

∂x
(u, v, w, x, y) = a,

∂v

∂x
(u, v, w, x, y) = b

∂w

∂u
(u, v, w, x, y) = c,

∂w

∂v
(u, v, w, x, y) = d

∂w

∂x
(u, v, w, x, y) = e,

∂y

∂v
(u, v, w, x, y) = f

∂y

∂w
(u, v, w, x, y) = g,

In terms of the constants a, b, c, d, e, f , and g, find ∇ x
u

y, the gradient of y with respect to the

vector [x, u]T .

Solution: The gradient is defined to be

∇ x
u

y =

[
∂y
∂x (u, x)
∂y
∂u (u, x)

]
,

i.e., the vector of partial derivatives while keeping constant only the other elements of the same
vector. Drawing a flow graph, we find

x

u

v

w

y

In this case we can write the total derivative rule as

∂y

∂x
(u, x) =

dy

dv

∂v

∂x
(u, v, w, x, y) +

dy

dw

∂w

∂x
(u, v, w, x, y)

=

(
∂y

∂v
+
dy

dw

∂w

∂v

)
∂v

∂x
(u, v, w, x, y) +

dy

dw

∂w

∂x
(u, v, w, x, y)

= (f + gd)b+ ge

Similarly,

∂y

∂u
(u, x) =

dy

dw

∂w

∂u
(u, v, w, x, y)

= gc

So

∇ x
u

y =

[
fb+ gdb+ ge

gc

]
.
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11. (30 points) Consider a bidirectional two-layer recurrent network that has been trained to perform
the following computations.

• The first layer has forward and backward cells which perform the following computations given
an input x ∈ < and prior hidden states f ∈ <, b ∈ <:

forward : ft = sin(xtwx + ft−1wh + b)2,

backward : bt = sin(xtwx + bt+1wh + b)2,

where the weights are wx = π
4 , wh = π

2 , and b = π
2 .

• The second layer has forward and backward cells which perform the following computations
given an input ~ξ ∈ <2 and a prior hidden states y ∈ <, z ∈ <:

forward : yt = cos
(π

2
(~wTx

~ξt + whyt−1 + b)
)
,

backward : zt = cos
(π

2
(~wTx

~ξt + whzt+1 + b)
)
,

where the weights are wx = [2, 1]T , wh = 2, and b = 1. Assume that the prior hidden state,
before each cell reads its first input, is 0.

(a) Consider the input sequence [x1, x2, x3] = [4, 1, 7]. What are the forward outputs [f1, f2, f3]
and the backward outputs [b3, b2, b1] from the first layer?

Solution:

[f1, f2, f3] = [1,
1

2
, 1]

[b3, b2, b1] = [
1

2
, 0, 1]
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(b) Now consider the outputs [f1, f2, f3] = [3, 1, 3] from the forward cell in the first layer and the

outputs [b3, b2, b1] = [3, 1, 0] from the backward cell in the first layer. Let ~ξt = [ft, bt]
T . What

are the forward outputs [y1, y2, y3] and the backward outputs [z3, z2, z1] from the second layer?

Solution:

[y1, y2, y3] = [0, 1, 1]

[z3, z2, z1] = [−1,−1, 0]

Page 15


