# UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN <br> Department of Electrical and Computer Engineering 

ECE 417 Multimedia Signal Processing
Spring 2021

## FINAL EXAM

Monday, December 13, 2021, 8:00-11:00am

- This is a CLOSED BOOK exam.
- You are permitted two sheets of handwritten notes, $8.5 \times 11$.
- Calculators and computers are not permitted.
- If you're taking the exam online, you will need to have your webcam turned on. Your exam will be provided by e-mail and on zoom at exactly 8:00am; you will need to photograph and upload your answers by exactly 11:00am.
- There will be a total of 200 points in the exam. Each problem specifies its point total. Plan your work accordingly.
- You must SHOW YOUR WORK to get full credit.

Name: $\qquad$
netid: $\qquad$

## Signal Processing and Linear Prediction

$$
\begin{gathered}
s[n]=G x[n]+\sum_{m=1}^{N} a_{m} s[n-m]=h[n] * x[n] \\
H(z)=\frac{G}{1-\sum_{m=1}^{N} a_{m} z^{-m}}=\frac{G}{\prod_{k=1}^{N}\left(1-p_{k} z^{-1}\right)}=\sum_{k=1}^{N} \frac{C_{k}}{1-p_{k} z^{-1}} \\
\mathcal{E}=\sum_{n=-\infty}^{\infty} e^{2}[n]=\sum_{n=-\infty}^{\infty}\left(s[n]-\sum_{m=1}^{p} a_{m} s[n-m]\right)^{2} \\
0=\sum_{n=-\infty}^{\infty}\left(s[n]-\sum_{m=1}^{p} a_{m} s[n-m]\right) s[n-k], \quad 1 \leq k \leq p \\
\vec{\gamma}=R \vec{a}
\end{gathered}
$$

## Image Interpolation

$$
\begin{gathered}
y\left[n_{1}, n_{2}\right]= \begin{cases}x\left[\frac{n_{1}}{U}, \frac{n_{2}}{U}\right] & \frac{n_{1}}{U}, \frac{n_{2}}{U} \text { both integers } \\
0 & \text { otherwise }\end{cases} \\
z\left[n_{1}, n_{2}\right]=h\left[n_{1}\right] *_{1}\left(h\left[n_{2}\right] *_{2} y\left[n_{1}, n_{2}\right]\right) \\
h_{\text {rect }}[n]=\left\{\begin{array}{ll}
1 & 0 \leq n<U \\
0 & \text { otherwise }
\end{array}, \quad h_{\text {tri }}[n]=\left\{\begin{array}{ll}
1-\frac{|n|}{U} & -U \leq n \leq U \\
0 & \text { otherwise }
\end{array}, \quad h_{\operatorname{sinc}}[n]=\frac{\sin (\pi n / U)}{\pi n / U}\right.\right.
\end{gathered}
$$

## Optical Flow

$$
\begin{gathered}
-\frac{\partial f}{\partial t}=(\nabla f)^{T} \vec{v} \\
\vec{v}=\left(A^{T} A\right)^{-1} A^{T} \vec{b}
\end{gathered}
$$

## Gaussians, GMMS, and Principal Components

$$
\begin{gathered}
p_{\vec{X}}(\vec{x})=\sum_{k=0}^{K-1} c_{k} \frac{1}{(2 \pi)^{D / 2}|\Sigma|^{1 / 2}} e^{-\frac{1}{2}\left(\vec{x}-\vec{\mu}_{k}\right)^{T} \Sigma_{k}^{-1}\left(\vec{x}-\vec{\mu}_{k}\right)} \\
(n-1) \Sigma=V \Lambda V^{T}, \quad \frac{1}{n-1} \Lambda=V^{T} \Sigma V, \quad V^{T} V=V V^{T}=I \\
\sum_{d=1}^{D} \sigma_{d}^{2}=\frac{1}{n-1} \operatorname{trace}\left(X^{T} X\right)=\frac{1}{n-1} \operatorname{trace}\left(Y^{T} Y\right)=\frac{1}{n-1} \sum_{d=1}^{D} \lambda_{d}
\end{gathered}
$$

LSTM

$$
\begin{aligned}
\vec{f}[t]=\sigma\left(u_{f} \vec{x}[t]+w_{f} \vec{h}[t-1]+b_{f}\right), \quad \vec{i}[t]=\sigma\left(u_{i} \vec{x}[t]+w_{i} \vec{h}[t-1]+b_{i}\right), \quad \vec{o}[t]=\sigma\left(u_{o} \vec{x}[t]+w_{o} \vec{h}[t-1]+b_{o}\right) \\
\vec{c}[t]=\vec{f}[t] \vec{c}[t-1]+\vec{i}[t] g\left(u_{c} \vec{x}[t]+w_{c} \vec{h}[t-1]+b_{c}\right), \quad \vec{h}[t]=\vec{o}[t] \vec{c}[t]
\end{aligned}
$$

## Expectation Maximization and Hidden Markov Models

$$
\begin{gathered}
Q(\Theta, \hat{\Theta})=E\left[\ln p\left(\mathcal{D}_{v}, \mathcal{D}_{h} \mid \Theta\right) \mid \mathcal{D}_{v}, \hat{\Theta}\right] \\
\alpha_{t}(j)=\sum_{i=1}^{N} \alpha_{t-1}(i) a_{i j} b_{j}\left(\vec{x}_{t}\right), \quad 1 \leq j \leq N, 2 \leq t \leq T \\
\beta_{t}(i)=\sum_{j=1}^{N} a_{i j} b_{j}\left(\vec{x}_{t+1}\right) \beta_{t+1}(j), \quad 1 \leq i \leq N, 1 \leq t \leq T-1 \\
\gamma_{t}(i)=\frac{\alpha_{t}(i) \beta_{t}(i)}{\sum_{k=1}^{N} \alpha_{t}(k) \beta_{t}(k)} \\
\xi_{t}(i, j)=\frac{\alpha_{t}(i) a_{i j} b_{j}\left(\vec{x}_{t+1}\right) \beta_{t+1}(j)}{\sum_{k=1}^{N} \sum_{\ell=1}^{N} \alpha_{t}(k) a_{k \ell} b_{\ell}\left(\vec{x}_{t+1}\right) \beta_{t+1}(\ell)} \\
a_{i j}^{\prime}=\frac{\sum_{t=1}^{T-1} \xi_{t}(i, j)}{\sum_{j=1}^{N} \sum_{t=1}^{T-1} \xi_{t}(i, j)} \\
\sum_{i}^{\prime}=\frac{\sum_{t=1}^{T} \gamma_{t}(i)\left(\vec{x}_{t}-\vec{\mu}_{i}\right)\left(\vec{x}_{t}-\vec{\mu}_{i}\right)^{T}}{\sum_{t=1}^{T} \gamma_{t}(i)} \\
\vec{\mu}_{i}^{\prime}=\frac{\sum_{t=1}^{T} \gamma_{t}(i) \vec{x}_{t}}{\sum_{t=1}^{T} \gamma_{t}(i)}
\end{gathered}
$$

Neural Nets

$$
\begin{aligned}
\xi_{i, k}^{(\ell)} & =w_{k, 0}^{(\ell)}+\sum_{j=1}^{p} w_{k, j}^{(\ell)} h_{i, j}^{(\ell-1)} \\
h_{i, k}^{(\ell)} & =g\left(\xi_{i, k}^{(\ell)}\right) \\
\frac{d \mathcal{L}}{d \xi_{i, k}^{(\ell)}} & =\dot{g}\left(\xi_{i, k}^{(\ell)}\right) \frac{d \mathcal{L}}{d h_{i, k}^{(\ell)}} \\
\frac{d \mathcal{L}}{d h_{i, j}^{(\ell-1)}} & =\sum_{k} \frac{d \mathcal{L}}{d \xi_{i, k}^{(\ell)}} w_{k, j}^{(\ell)} \\
\frac{d \mathcal{L}}{d w_{k, j}^{(\ell)}} & =\sum_{i} \frac{d \mathcal{L}}{d \xi_{i, k}^{(\ell)}} h_{i, j}^{(\ell-1)} \\
\dot{\sigma}(x) & =\sigma(x)(1-\sigma(x)) \\
w_{k, j}^{(\ell)} & \leftarrow w_{k, j}^{(\ell)}-\eta \frac{d E}{d w_{k, j}^{(\ell)}}
\end{aligned}
$$

1. (17 points) A particular signal, $x[n]$, has an autocorrelation function whose first two samples are:

$$
\begin{aligned}
& R_{0}=E\left[x^{2}[n]\right] \\
& R_{1}=E[x[n] x[n-1]]
\end{aligned}
$$

Suppose we want to model the signal spectrum as

$$
|X(\omega)| \approx \frac{G}{\left|1-a e^{-j \omega}\right|}
$$

where $G, R_{0}$, and $R_{1}$ are arbitrary constants. Write $a$ as a function of $G, R_{0}$, and/or $R_{1}$.

Solution: We can find the LPC coefficients using

$$
\vec{\gamma}=R \vec{a}
$$

where

$$
R=\left[\begin{array}{ccc}
R_{x x}[0] & \cdots & R_{x x}[p-1] \\
\vdots & \ddots & \vdots \\
R_{x x}[p-1] & \cdots & R_{x x}[0]
\end{array}\right], \quad \vec{\gamma}=\left[\begin{array}{c}
R_{x x}[1] \\
\vdots \\
R_{x x}[p]
\end{array}\right]
$$

In this case, $p=1$, so we have

$$
R_{x x}[1]=R_{x x}[0] a
$$

Therefore $a=R_{x x}[1] / R_{x x}[0]=R_{1} / R_{0}$.
2. (17 points) In a particular $2 \times 2$ block of pixels, the image gradient $\nabla x\left[n_{1}, n_{2}\right]$ and the temporal rate of change $\frac{\partial x}{\partial t}$ are given by the following table, where $a, \ldots, l$ are arbitrary constants:

| $\left(n_{1}, n_{2}\right)$ | $\frac{\partial x\left[n_{1}, n_{2}, t\right]}{\partial n_{1}}$ | $\frac{\partial x\left[n_{1}, n_{2}, t\right]}{\partial n_{2}}$ | $\frac{\partial x\left[n_{1}, n_{2}, t\right]}{\partial t}$ |
| :--- | :---: | :---: | :---: |
| $(0,0)$ | $a$ | $e$ | $i$ |
| $(0,1)$ | $b$ | $f$ | $j$ |
| $(1,0)$ | $c$ | $g$ | $k$ |
| $(1,1)$ | $d$ | $h$ | $l$ |

Suppose that we want to model the video using optical flow, i.e.,

$$
\begin{equation*}
x\left[n_{1}+v_{1}, n_{2}+v_{2}, t\right] \approx x\left[n_{1}, n_{2}, t\right] \tag{1}
\end{equation*}
$$

Find $v_{1}$ and $v_{2}$ so that the approximation in Eq. (1) is satisfied, for all four pixels of the image, with minimum mean-squared error. Your answer can include unresolved matrix multiplications, matrix inversions, determinants and so on, but it should not include any variables other than $a, b, c, d, e, f, g, h, i, j, k, l$.

Solution: The optical flow equation is

$$
\begin{equation*}
-\frac{\partial x}{\partial t}=\frac{\partial x}{\partial n_{1}} v_{1}+\frac{\partial x}{\partial n_{2}} v_{2} \tag{2}
\end{equation*}
$$

Approximately satisfying Eq. (1) for all four pixels in the image simultaneously would give

$$
\left[\begin{array}{ll}
a & e \\
b & f \\
c & g \\
d & h
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] \approx-\left[\begin{array}{c}
i \\
j \\
k \\
l
\end{array}\right]
$$

The error in Eq. (1) is minimized by the pseudo-inverse, i.e.,

$$
\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=-\left(\left[\begin{array}{ll}
a & e \\
b & f \\
c & g \\
d & h
\end{array}\right]^{T}\left[\begin{array}{ll}
a & e \\
b & f \\
c & g \\
d & h
\end{array}\right]\right)^{-1}\left[\begin{array}{ll}
a & e \\
b & f \\
c & g \\
d & h
\end{array}\right]^{T}\left[\begin{array}{c}
i \\
j \\
k \\
l
\end{array}\right]
$$

3. (17 points) The gram matrix of a dataset is the matrix whose $(i, j)^{\text {th }}$ element is $\vec{x}_{i}^{T} \vec{x}_{j}$, the inner product of $\vec{x}_{i}$ and $\vec{x}_{j}$. A particular dataset has a gram matrix with the following eigenvector/eigenvalue decomposition:

$$
G=\left[\begin{array}{cc}
-0.19 & -0.22 \\
-0.33 & -0.49 \\
-0.52 & 0.15 \\
-0.34 & 0.77 \\
-0.68 & -0.29 \\
0.04 & -0.04
\end{array}\right]\left[\begin{array}{cc}
20 & 0 \\
0 & 45
\end{array}\right]\left[\begin{array}{cccccc}
-0.19 & -0.33 & -0.52 & -0.34 & -0.68 & 0.04 \\
-0.22 & -0.49 & 0.15 & 0.77 & -0.29 & -0.04
\end{array}\right]
$$

Suppose that $\Sigma$ is the sample covariance of the same dataset, and suppose that $\Sigma=\left[\begin{array}{cc}\sigma_{1}^{2} & 0 \\ 0 & \sigma_{2}^{2}\end{array}\right]$. Draw the set of points $\left\{\vec{x}: \vec{x}^{T} \Sigma^{-1} \vec{x}=1\right\}$. Specify the numerical value of the coordinate of every point where this set intersects the axes.

Solution: The drawing should be an ellipse centered at $(0,0)$, intersecting the axes at $(2,0)$, $(-2,0),(0,3)$, and $(0,-3)$.
4. (17 points) Suppose you are studying the running behaviors of trained vs. untrained athletes. You have a sequence of feature vectors $\vec{x}_{t}$, where $t$ is time (measured in centiseconds) and $\vec{x}_{t}$ is a vector of features computed from a motion sensor being worn at the ankle. You have trained a neural network to compute $b_{j}\left(\vec{x}_{t}\right)=p\left(\vec{x}_{t} \mid q_{t}=j\right)$, where $q_{t} \in\{1=$ heel strike, $2=$ roll, $3=$ lift, $4=$ swing $\}$ denotes the gait phase. You also know the following probabilities:

$$
\begin{aligned}
a_{i, j} & =p\left(q_{t}=j \mid q_{t-1}=i\right) \\
\alpha_{t}(i) & =p\left(\vec{x}_{1}, \ldots, \vec{x}_{t}, q_{t}=i\right) \\
\beta_{t}(i) & =p\left(\vec{x}_{t+1}, \ldots, \vec{x}_{T} \mid q_{t}=i\right)
\end{aligned}
$$

Your goal is to identify all of the instants when the heel first touches the ground, i.e., at each time step $\tau(1 \leq \tau \leq T)$, you want to find

$$
P_{H S}(\tau)=p\left(q_{\tau-1}=4, q_{\tau}=1 \mid \vec{x}_{1}, \ldots, \vec{x}_{T}\right)
$$

Write a formula for $P_{H S}(\tau)$ in terms of $\alpha_{t}(i), \beta_{t}(i), a_{i, j}$, and $b_{i}\left(\vec{x}_{t}\right)$, for any values of $i, j, t$ that you find useful.

## Solution:

$$
P_{H S}(\tau)=\frac{\alpha_{\tau-1}(4) a_{4,1} b_{1}\left(\vec{x}_{\tau}\right) \beta_{\tau}(1)}{\sum_{i=1}^{4} \sum_{j=1}^{4} \alpha_{\tau-1}(i) a_{i, j} b_{j}\left(\vec{x}_{\tau}\right) \beta_{\tau}(j)}
$$

5. (17 points) In a neural network with residual connections (ResNet), the $k^{\text {th }}$ activation at layer $\ell$, $h_{k}^{(\ell)}$, is equal to the activation of the same node at the previous layer, plus a computed residual $g\left(\xi_{k}^{(\ell)}\right)$ :

$$
\begin{aligned}
& \xi_{k}^{(\ell)}=\sum_{j=1}^{N} w_{k, j}^{(\ell)} h_{j}^{(\ell-1)}, \quad 1 \leq k \leq N \\
& h_{k}^{(\ell)}=h_{k}^{(\ell-1)}+g\left(\xi_{k}^{(\ell)}\right), \quad 1 \leq k \leq N,
\end{aligned}
$$

where $g(\cdot)$ is a scalar nonlinearity, and $w_{k, j}^{(\ell)}$ is a network weight. Suppose that the training loss is $\mathcal{L}$, and suppose you already know $\frac{d \mathcal{L}}{d h_{k}^{(\ell)}}$. Find $\frac{d \mathcal{L}}{d h_{j}^{(\ell-1)}}$ in terms of $\frac{d \mathcal{L}}{d h_{k}^{(\ell)}}, \dot{g}(\xi)=\frac{\partial g}{\partial \xi_{k}^{(\ell)}}$, and $w_{k, j}^{(\ell)}$.

Solution: The total derivative rule gives us

$$
\begin{aligned}
\frac{d \mathcal{L}}{d h_{j}^{(\ell-1)}} & =\sum_{k=1}^{N} \frac{d \mathcal{L}}{d h_{k}^{(\ell)}} \frac{\partial h_{k}^{(\ell)}}{\partial h_{j}^{(\ell)}} \\
& =\frac{d \mathcal{L}}{d h_{j}^{(\ell)}}+\sum_{k=1}^{N} \frac{d \mathcal{L}}{d h_{k}^{(\ell)}} \dot{g}\left(\xi_{k}^{(\ell)}\right) w_{k, j}^{(\ell)}
\end{aligned}
$$

6. (17 points) An RBF-softmax is similar to a regular softmax nonlinearity, but instead of being a generalization of the logistic sigmoid, it is a generalization of a nonlinearity called a radial basis function (RBF), which is a kind of simplified Gaussian. An RBF-softmax has the following form:

$$
\hat{y}_{k}=\frac{w_{k} e^{-\left\|\vec{x}-\vec{\mu}_{k}\right\|^{2}}}{\sum_{\ell=1}^{N} w_{\ell} e^{-\left\|\vec{x}-\vec{\mu}_{\ell}\right\|^{2}}},
$$

where $\vec{x}=\left[x_{1}, \ldots, x_{D}\right]^{T}$ is the input vector, $\hat{y}_{k}$ is the $k^{\text {th }}$ output, and $w_{k}$ and $\vec{\mu}_{k}=\left[\mu_{1, k}, \ldots, \mu_{D, k}\right]^{T}$, for $1 \leq k \leq K$, are trainable parameters.
Find $\frac{d \hat{y}_{k}}{d w_{j}}$ for all $j \in\{1, \ldots, K\}$. Your answer may contain any of the variables used in the problem statement. Your answer should not include any unresolved derivatives.

## Solution:

$$
\begin{aligned}
\frac{d \hat{y}_{k}}{d w_{j}} & =\frac{e^{-\left\|\vec{x}-\vec{\mu}_{k}\right\|^{2}}}{\sum_{\ell=1}^{N} w_{\ell} e^{-\left\|\vec{x}-\vec{\mu}_{\ell}\right\|^{2}}} 1[k=j]-\frac{e^{-\left\|\vec{x}-\vec{\mu}_{k}\right\|^{2}}}{\left(\sum_{\ell=1}^{N} w_{\ell} e^{-\left\|\vec{x}-\vec{\mu}_{\ell}\right\|^{2}}\right)^{2}} e^{-\left\|\vec{x}-\vec{\mu}_{j}\right\|^{2}} \\
& = \begin{cases}\frac{1}{w_{k}} \hat{y}_{k}\left(1-\hat{y}_{k}\right) & k=j \\
-\frac{1}{w_{k}} \hat{y}_{k} \hat{y}_{j} & \text { otherwise }\end{cases}
\end{aligned}
$$

7. (17 points) A particular CNN has a grayscale image input, $x\left[n_{1}, n_{2}\right]$, and a one-channel output:

$$
\xi\left[n_{1}, n_{2}\right]=w\left[n_{1}, n_{2}\right] * x\left[n_{1}, n_{2}\right]
$$

where $*$ denotes convolution. The output is then max-pooled over the entire image:

$$
\hat{y}=\max _{0 \leq n_{1}<N_{1}} \max _{0 \leq n_{2}<N_{2}} \xi\left[n_{1}, n_{2}\right]
$$

Suppose the weights and the input image are given by

$$
\begin{aligned}
& w\left[n_{1}, n_{2}\right]= \begin{cases}e^{-\left(n_{1}^{2}+n_{2}^{2}\right)} & -3 \leq n_{1} \leq 3,-3 \leq n_{2} \leq 3 \\
0 & \text { otherwise }\end{cases} \\
& x\left[n_{1}, n_{2}\right]= \begin{cases}e^{-\left(\left(n_{1}-15\right)^{2}+\left(n_{2}-12\right)^{2}\right)} & 0 \leq n_{1} \leq 63,0 \leq n_{2} \leq 63 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

What is $\frac{d \hat{y}}{d w[2,1]}$ ? Your answer should be an explicit function of numerical constants; there should not be any variables in your answer.

## Solution:

$$
\frac{d \hat{y}}{d w[2,1]}=e^{-5}
$$

8. (17 points) Sometimes, it's not obvious, in advance, what loss function should be used to train a neural network. For example, suppose that we have a training database containing vector triples of the form $(\vec{x}, \vec{y}, \vec{z})$. Suppose we know that the set of vectors, $\vec{x}$, can be divided in half through the origin such that for half of the vectors, $\vec{y}$ is a linear transformation of $\vec{x}$, while for the other half, $\vec{z}$ is a linear transformation of $\vec{x}$. In other words, for some matrices $U_{\text {ideal }}$ and $V_{\text {ideal }}$ that we don't know, and for some vector $\vec{w}_{\text {ideal }}$ that we don't know:

- If $\vec{w}_{\text {ideal }}^{T} \vec{x} \geq 0$ then $\vec{y}=U_{\text {ideal }} \vec{x}$.
- If $\vec{w}_{\text {ideal }}^{T} \vec{x}<0$ then $\vec{z}=V_{\text {ideal }} \vec{x}$.

Devise a differentiable non-negative loss function, $\mathcal{L}$, that will approach zero as the estimated values of $\vec{w}, U$, and $V$ approach their true values. Write your loss as a function of the estimated parameters $\vec{w}, U$, and $V$, and as a function of the vectors in just one data triple, $(\vec{x}, \vec{y}, \vec{z})$.

Solution: First, we want differentiable functions of $U$ and $V$ that will be minimized when $\vec{y}=U \vec{x}$ and $\vec{z}=V \vec{x}$. Most of the functions that do this are norms of the vectors $(\vec{y}-U \vec{x})$ and $(\vec{z}-V \vec{x})$, for example, the squared L2 norms, $\|\vec{y}-U \vec{x}\|^{2}$ and $\|\vec{z}-V \vec{x}\|^{2}$, are good choices.
Second, we want to multiply $\|\vec{y}-U \vec{x}\|^{2}$ by some modifier that goes to zero when $\vec{w}^{T} \vec{x}<0$. The unit step function would do the trick, but it's not differentiable; we need something that can be differentiated. The ReLU nonlinearity will do the trick:

$$
\mathcal{L}=\operatorname{ReLU}\left(\vec{w}^{T} \vec{x}\right)\|\vec{y}-U \vec{x}\|^{2}+\operatorname{ReLU}\left(-\vec{w}^{T} \vec{x}\right)\|\vec{z}-V \vec{x}\|^{2}
$$

The sigmoid is also a good choice. It doesn't go to zero immediately when $\vec{w}^{T} \vec{x}<0$, but it goes to zero when $\vec{w}^{T} \vec{x} \ll 0$. Since the problem specification doesn't actually dictate the norm of $\vec{w}$ (it can be any scalar times $\vec{w}_{\text {ideal }}$, and still meet the problem specifications), the sigmoid will also work here:

$$
\mathcal{L}=\sigma\left(\vec{w}^{T} \vec{x}\right)\|\vec{y}-U \vec{x}\|^{2}+\sigma\left(-\vec{w}^{T} \vec{x}\right)\|\vec{z}-V \vec{x}\|^{2}
$$

9. (17 points) Suppose $y$ is a scalar continuous piece-wise linear function of the scalar variable $x$, with

$$
\frac{d y}{d x}= \begin{cases}0 & x<x_{0} \\ s_{i} & x_{i} \leq x<x_{i+1}, \quad 0 \leq i<N \\ s_{N} & x_{N} \leq x\end{cases}
$$

This function, $y(x)$, can be exactly represented by a ReLU neural network of the form

$$
y(x)=\sum_{i=0}^{N} w_{i} \operatorname{ReLU}\left(x+b_{i}\right)
$$

Find $w_{i}$ and $b_{i}$, for all $0 \leq i \leq N$, in terms of $s_{j}$ and $x_{j}$, for any $0 \leq j \leq N$ that you find to be useful.

Solution: We know that

$$
\operatorname{ReLU}\left(x+b_{i}\right)= \begin{cases}x+b_{i} & x+b_{i}>0 \\ 0 & \text { otherwise }\end{cases}
$$

So we can get the breakpoints exactly right by setting

$$
b_{i}=-x_{i}
$$

Setting the slopes equal, we get that

$$
s_{i}=\sum_{j=0}^{i} w_{j}
$$

which can be inverted to find that

$$
\begin{aligned}
& w_{0}=s_{0} \\
& w_{i}=s_{i}-s_{i-1}, \quad 1 \leq i \leq N
\end{aligned}
$$

10. (17 points) Suppose we have five variables, $u, v, w, x, y$. All but seven of their partial derivatives are zero; for example, $\frac{\partial y}{\partial u}(u, v, w, x, y)=\frac{\partial y}{\partial x}(u, v, w, x, y)=0$. The only seven nonzero partial derivatives are

$$
\begin{array}{ll}
\frac{\partial u}{\partial x}(u, v, w, x, y)=a, & \frac{\partial v}{\partial x}(u, v, w, x, y)=b \\
\frac{\partial w}{\partial u}(u, v, w, x, y)=c, & \frac{\partial w}{\partial v}(u, v, w, x, y)=d \\
\frac{\partial w}{\partial x}(u, v, w, x, y)=e, & \frac{\partial y}{\partial v}(u, v, w, x, y)=f \\
\frac{\partial y}{\partial w}(u, v, w, x, y)=g &
\end{array}
$$

In terms of the constants $a, b, c, d, e, f$, and $g$, find $\nabla\left[\begin{array}{l}x \\ u\end{array}\right]^{y}$, the gradient of $y$ with respect to the vector $[x, u]^{T}$.

Solution: The gradient is defined to be
i.e., the vector of partial derivatives while keeping constant only the other elements of the same vector. Drawing a flow graph, we find


In this case we can write the total derivative rule as

$$
\begin{aligned}
\frac{\partial y}{\partial x}(u, x) & =\frac{d y}{d v} \frac{\partial v}{\partial x}(u, v, w, x, y)+\frac{d y}{d w} \frac{\partial w}{\partial x}(u, v, w, x, y) \\
& =\left(\frac{\partial y}{\partial v}+\frac{d y}{d w} \frac{\partial w}{\partial v}\right) \frac{\partial v}{\partial x}(u, v, w, x, y)+\frac{d y}{d w} \frac{\partial w}{\partial x}(u, v, w, x, y) \\
& =(f+g d) b+g e
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\frac{\partial y}{\partial u}(u, x) & =\frac{d y}{d w} \frac{\partial w}{\partial u}(u, v, w, x, y) \\
& =g c
\end{aligned}
$$

So

$$
\left.\nabla_{\left[\begin{array}{l}
x \\
u
\end{array}\right]^{y=}} \begin{array}{c}
f b+g d b+g e \\
g c
\end{array}\right]
$$

11. (30 points) Consider a bidirectional two-layer recurrent network that has been trained to perform the following computations.

- The first layer has forward and backward cells which perform the following computations given an input $x \in \Re$ and prior hidden states $f \in \Re, b \in \Re$ :

$$
\begin{aligned}
\text { forward : } f_{t} & =\sin \left(x_{t} w_{x}+f_{t-1} w_{h}+b\right)^{2}, \\
\text { backward : } b_{t} & =\sin \left(x_{t} w_{x}+b_{t+1} w_{h}+b\right)^{2},
\end{aligned}
$$

where the weights are $w_{x}=\frac{\pi}{4}, w_{h}=\frac{\pi}{2}$, and $b=\frac{\pi}{2}$.

- The second layer has forward and backward cells which perform the following computations given an input $\vec{\xi} \in \Re^{2}$ and a prior hidden states $y \in \Re, z \in \Re$ :

$$
\begin{aligned}
\text { forward : } y_{t} & =\cos \left(\frac{\pi}{2}\left(\vec{w}_{x}^{T} \vec{\xi}_{t}+w_{h} y_{t-1}+b\right)\right) \\
\text { backward }: z_{t} & =\cos \left(\frac{\pi}{2}\left(\vec{w}_{x}^{T} \vec{\xi}_{t}+w_{h} z_{t+1}+b\right)\right)
\end{aligned}
$$

where the weights are $w_{x}=[2,1]^{T}, w_{h}=2$, and $b=1$. Assume that the prior hidden state, before each cell reads its first input, is 0 .
(a) Consider the input sequence $\left[x_{1}, x_{2}, x_{3}\right]=[4,1,7]$. What are the forward outputs $\left[f_{1}, f_{2}, f_{3}\right]$ and the backward outputs $\left[b_{3}, b_{2}, b_{1}\right]$ from the first layer?

## Solution:

$$
\begin{aligned}
{\left[f_{1}, f_{2}, f_{3}\right] } & =\left[1, \frac{1}{2}, 1\right] \\
{\left[b_{3}, b_{2}, b_{1}\right] } & =\left[\frac{1}{2}, 0,1\right]
\end{aligned}
$$

(b) Now consider the outputs $\left[f_{1}, f_{2}, f_{3}\right]=[3,1,3]$ from the forward cell in the first layer and the outputs $\left[b_{3}, b_{2}, b_{1}\right]=[3,1,0]$ from the backward cell in the first layer. Let $\vec{\xi}_{t}=\left[f_{t}, b_{t}\right]^{T}$. What are the forward outputs $\left[y_{1}, y_{2}, y_{3}\right]$ and the backward outputs $\left[z_{3}, z_{2}, z_{1}\right]$ from the second layer?

## Solution:

$$
\begin{aligned}
{\left[y_{1}, y_{2}, y_{3}\right] } & =[0,1,1] \\
{\left[z_{3}, z_{2}, z_{1}\right] } & =[-1,-1,0]
\end{aligned}
$$

