UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN Department of Electrical and Computer Engineering

ECE 417 Multimedia Signal Processing Spring 2021

PRACTICE EXAM 3

Exam will be Monday, December 13, 2021, 8:00-11:00am

- This will be a CLOSED BOOK exam.
- You will be permitted two sheets of handwritten notes, 8.5x11.
- Calculators and computers are not permitted.
- If you're taking the exam online, you will need to have your webcam turned on. Your exam will be provided by e-mail and on zoom at exactly 8:00am; you will need to photograph and upload your answers by exactly 11:00am.
- There will be a total of 200 points in the exam. Each problem specifies its point total. Plan your work accordingly.
- You must SHOW YOUR WORK to get full credit.

1. (20 points) Suppose we're trying to predict the sequence $\zeta_1, \ldots, \zeta_{100}$ from the sequence x_1, \ldots, x_{100} . We want to use some type of neural net (fully-connected, CNN, or LSTM) to compute z_1, \ldots, z_{100} in order to minimize the error

$$E = \frac{1}{200} \sum_{t=1}^{100} \left(z_t - \zeta_t \right)^2$$

We only have one training sequence $(x_1, \ldots, x_{100}, \zeta_1, \ldots, \zeta_{100})$.

(a) Suppose we use a **fully-connected one-layer neural net**, with 10,000 trainable network weights w_{kj} , and 100 trainable bias terms w_{k0} , such that

$$z_k = \sigma \left(w_{k0} + \sum_{j=1}^{100} w_{kj} x_j \right)$$

where $\sigma(x) = 1/(1 + e^{-x})$ is the logistic nonlinearity. Find the derivatives of the error with respect to the weights (dE/dw_{kj}) and biases (dE/dw_{k0}) . Express your answers in terms of x_j , z_k , and ζ_k for appropriate values of k and j; the terms w_{kj} and w_{k0} should not show up on the right-hand-side of any of your equations.

$$\frac{dE}{dw_{k0}} = \frac{1}{100}(z_k - \zeta_k)z_k(1 - z_k)$$
$$\frac{dE}{dw_{kj}} = \frac{1}{100}(z_k - \zeta_k)z_k(1 - z_k)x_j$$

(b) Suppose we use a CNN (convolutional neural net) with 99 trainable weights $w[\tau]$ and a single scalar bias term, b, i.e.,

$$z_t = \sigma \left(b + \sum_{\tau = -49}^{49} w[\tau] x_{t-\tau} \right)$$

where $\sigma(x) = 1/(1 + e^{-x})$ is the logistic nonlinearity. Find the derivatives of the error with respect to the weights $(dE/dw[\tau])$ and bias (dE/db). Assume that $x_t = 0$ for $t \le 0$ or $t \ge 101$. Express your answers in terms of x_j , z_k , and ζ_k for appropriate values of k and j; the terms $w[\tau]$ and b should not show up on the right-hand-side of any of your equations.

$$\frac{dE}{db} = \frac{1}{100} \sum_{t=1}^{100} (z_t - \zeta_t) z_t (1 - z_t)$$
$$\frac{dE}{dw[\tau]} = \frac{1}{100} \sum_{t=1}^{100} (z_t - \zeta_t) z_t (1 - z_t) x_{t-\tau}$$

(c) Suppose we use an **RNN (recurrent neural network)** with just one scalar memory cell whose weights and biases are w, u, and b:

$$z_t = \sigma(ux_t + wz_{t-1} + b)$$

Find the derivatives of the error with respect to the weights and biases (dE/du, dE/dw, and dE/db). Express your answers in terms of x_j , z_k , and ζ_k for appropriate values of k and j; the terms u, w and b should not show up on the right-hand-side of any of your equations. You may express your answer recursively, or your answer may contain summation (\sum) and/or product (\prod) terms.

$$\begin{aligned} \frac{dE}{dz_t} &= \frac{\partial E}{\partial z_t} + \frac{dE}{dz_{t+1}} \frac{\partial z_{t+1}}{\partial z_t} \\ &= \frac{1}{100} (z_t - \zeta_t) + \frac{dE}{dz_{t+1}} z_{t+1} (1 - z_{t+1}) w \end{aligned}$$

$$\begin{split} \frac{dE}{db} &= \sum_{t=1}^{100} \frac{dE}{dz_t} \frac{\partial z_t}{\partial b} \\ &= \sum_{t=1}^{100} \frac{dE}{dz_t} z_t (1-z_t) \\ \frac{dE}{du} &= \sum_{t=1}^{100} \frac{dE}{dz_t} \frac{\partial z_t}{\partial u} \\ &= \sum_{t=1}^{100} \frac{dE}{dz_t} z_t (1-z_t) x_t \\ \frac{dE}{dw} &= \sum_{t=1}^{100} \frac{dE}{dz_t} \frac{\partial z_t}{\partial w} \\ &= \sum_{t=2}^{100} \frac{dE}{dz_t} z_t (1-z_t) z_{t-1} \end{split}$$

(d) Suppose we use an LSTM (long-short-term memory network) whose weights and biases are pre-specified: $u_c = 1$, and all of the other weights and biases are zero:

$$b_{c} = 0, u_{c} = 1, w_{c} = 0, b_{f} = 0, u_{f} = 0, w_{f} = 0, b_{i} = 0, u_{i} = 0, w_{i} = 0, b_{o} = 0, u_{o} = 0, w_{o} = 0$$

$$f[t] = \sigma(u_{f}x_{t} + w_{f}z_{t-1} + b_{f}), \quad i[t] = \sigma(u_{i}x_{t} + w_{i}z_{t-1} + b_{i}), \quad o[t] = \sigma(u_{o}x_{t} + w_{o}z_{t-1} + b_{o})$$

$$c[t] = f[t]c[t-1] + i[t]\sigma(u_{c}x_{t} + w_{c}z_{t-1} + b_{c}), \quad z_{t} = o[t]c[t]$$

Assume that c[t] = 0 for $t \le 0$. Express z_t in terms of $\sigma(x_t)$ for $0 \le t \le 100$. Your answer should NOT contain any of the variables c[t], f[t], i[t], or o[t]. Your answer may contain a summation (Σ). You may find it useful to know that $\sigma(0) = \frac{1}{2}$.

Solution: $c[t] = \frac{1}{2}c[t-1] + \frac{1}{2}\sigma(x_t)$ $z_t = \frac{1}{2}c[t]$ $= \sum_{\tau=1}^t \left(\frac{1}{2}\right)^{2+t-\tau} \sigma(x_\tau)$ 2. (20 points) In class, we have been working with the exponential softmax function, but other forms exist. For example, the polynomial softmax function transforms inputs b_{ℓ} into outputs z_{ℓ} according to

$$z_{\ell} = \frac{b_{\ell}^p}{\sum_k b_k^p},$$

for some constant integer power, p. The cross-entropy loss is

$$E = -\sum_{\ell} \zeta_{\ell} \ln z_{\ell}, \qquad \zeta_{\ell} = \begin{cases} 1 & \ell = \ell^* \\ 0 & \text{otherwise} \end{cases}$$

Find $\frac{\partial E}{\partial b_j}$ for all j.

Solution: Define

$$\delta_{j\ell} = \begin{cases} 1 & j = \ell \\ 0 & \text{otherwise} \end{cases}$$

Then

$$\frac{\partial E}{\partial b_j} = -\sum_{\ell} \frac{\zeta_{\ell}}{z_{\ell}} \left(\frac{p b_j^{p-1} \delta_{j\ell}}{\sum_k b_k^p} - \frac{p b_{\ell}^p b_j^{p-1}}{\left(\sum_k b_k^p\right)^2} \right)$$

Actually, that's an adequate solution. But if we want, we could simplify it:

$$\begin{aligned} \frac{\partial E}{\partial b_j} &= -\sum_{\ell} \frac{p}{b_j} \zeta_{\ell} \left(\delta_{j\ell} - z_j \right) \\ &= -\frac{p}{b_j} \left(\delta_{j\ell^*} - z_j \right) = -\frac{p}{b_j} \left(\zeta_j - z_j \right) \end{aligned}$$

3. (20 points) Suppose you have a 10-pixel input image, x[n]. This is processed by a one-pixel "convolution" (really just multiplication by a scalar coefficient, w), followed by a stride-2 max pooling layer, thus:

$$a[n] = wx[n], \quad 1 \le n \le 10$$
$$y[k] = \max\left(0, \max_{2k-1 \le n \le 2k} a[n]\right), 1 \le k \le 5$$

Suppose you know the input x[n], and you know $\epsilon[k] = \frac{\partial E}{\partial y[k]}$. Find $\frac{\partial E}{\partial w}$ in terms of x[n] and $\epsilon[k]$.

Solution: $\frac{\partial E}{\partial w} = \sum_{k=1}^{5} \epsilon[k] x \left[\operatorname*{argmax}_{2k-1 \le n \le 2k} a[n] \right]$ 4. (20 points) Suppose that you have a training dataset with *n* training tokens $\{(\vec{x}_1, \zeta_1), \ldots, (\vec{x}_n, \zeta_n)\}$, where $\vec{x}_i = [x_{i1}, \ldots, x_{ip}]^T$, and $\zeta_i \in \{0, 1\}$. You have a one-layer neural network that tries to approximate ζ_i with z_i , computed as $z_i = \sigma(\vec{w}^T \vec{x}_i)$, where $\sigma(\cdot)$ is the logistic function, and \vec{w} is a weight vector. Suppose that you want to maximize the accuracy of z_i , but you also want to make $\vec{w}^T \vec{x}_i$ as small as possible. One way to do this is by using a two-part error metric,

$$E = -\frac{1}{n} \sum_{i=1}^{n} \left(\zeta_i \ln z_i + (1 - \zeta_i) \ln(1 - z_i)\right) + \frac{1}{2n} \sum_{i=1}^{n} \left(\vec{w}^T \vec{x}_i\right)^2$$

Find $\nabla_{\vec{w}} E$, the gradient of E with respect to \vec{w} .

$$\nabla_{\vec{w}} E = \frac{1}{n} \sum_{i=1}^{n} \left((1 - \zeta_i) z_i - \zeta_i (1 - z_i) + \vec{w}^T \vec{x}_i \right) \vec{x}_i^T$$

5. (20 points) Consider a scalar LSTM, with a scalar memory cell, input gate, output gate, and forget gate, related to one another by scalar coefficients $a_i, b_i, a_o, b_o, a_f, b_f, a_c, b_c$ as follows:

$$\begin{split} i[n] &= \text{input gate} = \sigma(b_i x[n] + a_i c[n-1]), \quad 1 \leq n \\ o[n] &= \text{output gate} = \sigma(b_o x[n] + a_o c[n-1]), \quad 1 \leq n \\ f[n] &= \text{forget gate} = \sigma(b_f x[n] + a_f c[n-1]), \quad 1 \leq n \\ c[n] &= f[n] c[n-1] + i[n] \left(b_c x[n] + a_c c[n-1] \right), \quad 1 \leq n \\ y[n] &= o[n] c[n], \quad 1 \leq n \end{split}$$

Suppose that the network is initialized with $b_i = b_o = b_f = a_i = a_o = a_f = a_c = 0$, and c[0] = 0. In fact, the only nonzero coefficient is $b_c = 1$. Under this condition, find a formula for y[n] in terms of the values of x[m], $1 \le m \le n$. No variables other than x[m] should appear in your answer. HINT: $\sigma(0) = 1/2$.

$$y[n] = \sum_{m=1}^{n} \left(\frac{1}{2}\right)^{n-m+2} x[m]$$

6. (20 points) In class, we have been working with nodes in layers, but a neural net can also be defined as a fully-connected graph, with every node connected to every other node. For example, suppose there is a scalar input x, and

$$y_0 = x$$

$$a_{\ell} = \sum_{k=0}^{\ell-1} w_{\ell k} y_k, \quad 1 \le \ell \le L$$

$$y_{\ell} = \sigma(a_{\ell}), \quad 1 \le \ell \le L$$

$$E = \frac{1}{2} \sum_{\ell=1}^{L} (y_{\ell} - y_{\ell}^*)^2$$

Define the back-propagation error to be $\delta_{\ell} = \frac{dE}{da_{\ell}}$. Find an algorithm that computes δ_{ℓ} for all $1 \leq \ell \leq L$.

$$\delta_{\ell} = \left((y_{\ell} - y_{\ell}^*) + \sum_{k=\ell+1}^{L} \delta_k w_{kl} \right) \sigma'(a_{\ell})$$
$$= \left((y_{\ell} - y_{\ell}^*) + \sum_{k=\ell+1}^{L} \delta_k w_{kl} \right) y_{\ell}(1 - y_{\ell})$$

7. (20 points) A convolutional layer leads to convolutional back-propagation. In the neural net literature, however, convolution is sometimes replaced (without comment!) by correlation, resulting in something like the following, where $x[m_1, m_2]$ is the input and $u[m_1, m_2]$ are the network weights:

$$a[n_1, n_2] = \sum_{m_1} \sum_{m_2} u[m_1 - n_1, m_2 - n_2] x[m_1, m_2]$$

Suppose the error, E, is some function whose partial derivatives $\epsilon[n_1, n_2] = \frac{\partial E}{\partial a[n_1, n_2]}$ are known. Define $\delta[m_1, m_2] = \frac{\partial E}{\partial x[m_1, m_2]}$. Find $\delta[m_1, m_2]$ in terms of $\epsilon[n_1, n_2]$.

$$\delta[m_1, m_2] = \sum_{n_1} \sum_{n_2} \epsilon[n_1, n_2] u[m_1 - n_1, m_2 - n_2]$$

8. (20 points) Suppose you have a dataset containing audio waveforms, \vec{x}_i , each matched with two different one-hot label vectors. The label vector $\vec{y}_i^* = [y_{i1}^*, \ldots, y_{iq}^*]^T$, where $y_{ij}^* \in \{0, 1\}$, is approximated by the network output $\vec{y}_i = [y_{i1}, \ldots, y_{iq}]^T$, where $y_{ij} \in (0, 1)$. The label vector $\vec{z}_i^* = [z_{i1}^*, \ldots, z_{ir}^*]^T$, where $z_{ij}^* \in \{0, 1\}$, is approximated by the network output $\vec{z}_i = [z_{i1}, \ldots, z_{ir}]^T$, where $z_{ij} \in (0, 1)$. Both \vec{y}_i and \vec{z}_i are functions of a hidden nodes vector \vec{h}_i as

$$\begin{split} \vec{h}_i &= g\left(W\vec{x}_i\right)\\ \vec{y}_i &= \operatorname{softmax}\left(U\vec{h}_i\right)\\ \vec{z}_i &= \operatorname{softmax}\left(V\vec{h}_i\right) \end{split}$$

where U, V and W are trainable weight matrices, and $g(\cdot)$ is some scalar nonlinearity. Find an error metric E such that, by minimizing E, you can:

- maximize the accuracy of \vec{y}_i as an estimate of \vec{y}_i^*
- **minimize** the accuracy of $\vec{z_i}$ as an estimate of $\vec{z_i^*}$

Solution: There are many, many acceptable solutions. Most are forms of E with two terms: the first term is reduced as y_{ik} gets more accurate, the second term is reduced as $z_{i\ell}$ gets more inaccurate. For example,

$$E = -\frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{q} y_{ik}^* \ln y_{ik} + \frac{1}{n} \sum_{i=1}^{n} \sum_{\ell=1}^{r} z_{i\ell}^* \ln z_{i\ell}$$

9. (20 points) Consider an LSTM defined by

$$\vec{i}[n] = \text{input gate} = \sigma(B_i \vec{x}[n] + A_i \vec{c}[n-1])$$

$$\vec{o}[n] = \text{output gate} = \sigma(B_o \vec{x}[n] + A_o \vec{c}[n-1])$$

$$\vec{f}[n] = \text{forget gate} = \sigma(B_f \vec{x}[n] + A_f \vec{c}[n-1])$$

$$\vec{c}[n] = \vec{f}[n] \odot c[n-1] + \vec{i}[n] \odot g(B_c \vec{x}[n] + A_c \vec{c}[n-1])$$

$$\vec{y}[n] = \vec{o}[n] \odot \vec{c}[n]$$

where the vector cell is $\vec{c}[n] = [c_1[n], \dots, c_p[n]]^T$, and where \odot denotes the Hadamard (array) product, e.g., $\vec{o}[n] \odot \vec{c}[n] = [o_1[n]c_1[n], \dots, o_p[n]c_p[n]]^T$. Find the derivative $\frac{\partial c_j[n]}{\partial c_k[n-1]}$.

Solution: Define $\delta_{jk} = \begin{cases} 1 & j=k \\ 0 & \text{else} \end{cases}$. Define $\tilde{c}_j[n]$ to be the j^{th} element of $g(B_c \vec{x}[n] + A_c \vec{c}[n-1])$, and

$$\frac{\partial c_j[n]}{\partial c_k[n-1]} = \frac{\partial c_j[n]}{\partial f_j[n]} \frac{\partial f_j[n]}{\partial c_k[n-1]} + f_j[n]\delta_{jk} + \frac{\partial c_j[n]}{\partial i_j[n]} \frac{\partial i_j[n]}{\partial c_k[n-1]} + i_j[n] \frac{\partial \tilde{c}_j[n]}{\partial c_k[n-1]}$$

Now define $\tilde{c}'_j[n]$ to be the j^{th} element of $g'(B_c \vec{x}[n] + A_c \vec{c}[n-1])$. We could also define $i'_j[n]$ to be the j^{th} element of $\sigma'(B_i \vec{x}[n] + A_i \vec{c}[n-1])$, but actually we don't need to, since the derivative of the logistic function is just $i_j[n](1-i_j[n])$. Define a^o_{mn} to be the $(m, n)^{\text{th}}$ element of the matrix A_o , and so on. Then

$$\frac{\partial c_j[n]}{\partial c_k[n-1]} = c_j[n-1]f_j[n](1-f_j[n])a_{jk}^f + f_j[n]\delta_{jk} + \tilde{c}_j[n]i_j[n](1-i_j[n])a_{jk}^i + i_j[n]\tilde{c}_j'[n]a_{jk}^c$$

10. (20 points) A particular two-layer neural network accepts a two-dimensional input vector $\vec{x} = [x_1, x_2, 1]^T$, and generates an output $z = h(\vec{v}^T g(U\vec{x}))$. Choose network weights \vec{v} and U, and element-wise scalar nonlinearities h() and g(), that will generate the following output:

$$z = \begin{cases} 1 & |x_1| < 2 \text{ and } |x_2| < 2 \\ -1 & \text{otherwise} \end{cases}$$

Solution: Several solutions are possible. Here's one.

$$U = \begin{bmatrix} -1 & 0 & 2 \\ 1 & 0 & 2 \\ 0 & -1 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$
$$g(a) = u(a)$$
$$\vec{v}^T = [1, 1, 1, 1, -3.5]$$
$$h(a) = \mathrm{sgn}(b)$$

For this definition to exactly match the problem statement, it's necessary to define u(0) = 0.

11. (20 points) Your training database contains matched pairs $\{(\vec{x}_1, \vec{y}_1), \dots, (\vec{x}_n, \vec{y}_n)\}$ where \vec{x}_i is the *i*th observation vector, and \vec{y}_i is the *i*th label vector. For some initial weight matrix $W = \begin{bmatrix} w_{11} & \cdots \\ \cdots & w_{qp} \end{bmatrix}$, you have already computed the following two quantities:

$$f_{\ell}(\vec{x}_i, W) \qquad 1 \le \ell \le r, \ 1 \le i \le n \tag{1}$$

$$\frac{\partial f_{\ell}(\vec{x}_i, W)}{\partial w_{kj}} \qquad 1 \le \ell \le r, \ 1 \le k \le q, \ 1 \le j \le p, \ 1 \le i \le n$$
(2)

You want to find a new matrix $W' = \begin{bmatrix} w'_{11} & \cdots \\ \cdots & w'_{qp} \end{bmatrix}$ such that $\mathcal{J}(W') \geq \mathcal{J}(W)$ (that is, you want to **maximize** \mathcal{J}), where

$$\mathcal{J}(W) = \sum_{i=1}^{n} \sum_{\ell=1}^{r} y_{\ell,i} \ln\left(f_{\ell}(\vec{x}_i, W)\right)$$

Give a formula for w'_{kj} in terms of w_{kj} , $f_{\ell}(\vec{x}_i, W)$, $\frac{\partial f_{\ell}(\vec{x}_i, W)}{\partial w_{kj}}$, and in terms of a step size, η , such that for suitable values of η , $\mathcal{J}(W') \geq \mathcal{J}(W)$.

Solution:

$$\frac{d\mathcal{J}(W)}{dw_{kj}} = \sum_{i} \sum_{\ell} \frac{d\mathcal{J}(W)}{df_{\ell}(\vec{x}_{i}, W)} \frac{\partial f_{\ell}(\vec{x}_{i}, W)}{\partial w_{kj}}$$
$$= \sum_{i} \sum_{\ell} \frac{y_{\ell,i}}{f_{\ell}(\vec{x}_{i}, W)} \frac{\partial f_{\ell}(\vec{x}_{i}, W)}{\partial w_{kj}}$$

In this case we are trying to increase $\mathcal{J}(W)$, rather than decreasing it, so the gradient update should be in the direction of the gradient, not in the opposite direction, thus:

$$w'_{kj} = w_{kj} + \eta \sum_{i} \sum_{\ell} \frac{y_{\ell,i}}{f_{\ell}(\vec{x}_i, W)} \frac{\partial f_{\ell}(\vec{x}_i, W)}{\partial w_{kj}}$$