UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Department of Electrical and Computer Engineering

ECE 417 Multimedia Signal Processing
Spring 2021

PRACTICE EXAM 3

Exam will be Monday, December 13, 2021, 8:00-11:00am

- This will be a CLOSED BOOK exam.
- You will be permitted two sheets of handwritten notes, 8.5×11.
- Calculators and computers are not permitted.
- If you're taking the exam online, you will need to have your webcam turned on. Your exam will be provided by e-mail and on zoom at exactly 8:00am; you will need to photograph and upload your answers by exactly 11:00am.
- There will be a total of 200 points in the exam. Each problem specifies its point total. Plan your work accordingly.
- You must SHOW YOUR WORK to get full credit.

1. (20 points) Suppose we're trying to predict the sequence $\zeta_{1}, \ldots, \zeta_{100}$ from the sequence x_{1}, \ldots, x_{100}. We want to use some type of neural net (fully-connected, CNN, or LSTM) to compute z_{1}, \ldots, z_{100} in order to minimize the error

$$
E=\frac{1}{200} \sum_{t=1}^{100}\left(z_{t}-\zeta_{t}\right)^{2}
$$

We only have one training sequence $\left(x_{1}, \ldots, x_{100}, \zeta_{1}, \ldots, \zeta_{100}\right)$.
(a) Suppose we use a fully-connected one-layer neural net, with 10,000 trainable network weights $w_{k j}$, and 100 trainable bias terms $w_{k 0}$, such that

$$
z_{k}=\sigma\left(w_{k 0}+\sum_{j=1}^{100} w_{k j} x_{j}\right)
$$

where $\sigma(x)=1 /\left(1+e^{-x}\right)$ is the logistic nonlinearity. Find the derivatives of the error with respect to the weights $\left(d E / d w_{k j}\right)$ and biases $\left(d E / d w_{k 0}\right)$. Express your answers in terms of x_{j}, z_{k}, and ζ_{k} for appropriate values of k and j; the terms $w_{k j}$ and $w_{k 0}$ should not show up on the right-hand-side of any of your equations.
(b) Suppose we use a CNN (convolutional neural net) with 99 trainable weights $w[\tau]$ and a single scalar bias term, b, i.e.,

$$
z_{t}=\sigma\left(b+\sum_{\tau=-49}^{49} w[\tau] x_{t-\tau}\right)
$$

where $\sigma(x)=1 /\left(1+e^{-x}\right)$ is the logistic nonlinearity. Find the derivatives of the error with respect to the weights $(d E / d w[\tau])$ and bias $(d E / d b)$. Assume that $x_{t}=0$ for $t \leq 0$ or $t \geq 101$. Express your answers in terms of x_{j}, z_{k}, and ζ_{k} for appropriate values of k and j; the terms $w[\tau]$ and b should not show up on the right-hand-side of any of your equations.
(c) Suppose we use an RNN (recurrent neural network) with just one scalar memory cell whose weights and biases are w, u, and b :

$$
z_{t}=\sigma\left(u x_{t}+w z_{t-1}+b\right)
$$

Find the derivatives of the error with respect to the weights and biases $(d E / d u, d E / d w$, and $d E / d b)$. Express your answers in terms of x_{j}, z_{k}, and ζ_{k} for appropriate values of k and j; the terms u, w and b should not show up on the right-hand-side of any of your equations. You may express your answer recursively, or your answer may contain summation $\left(\sum\right)$ and/or product (Π) terms.
(d) Suppose we use an LSTM (long-short-term memory network) whose weights and biases are pre-specified: $u_{c}=1$, and all of the other weights and biases are zero:

$$
\begin{gathered}
b_{c}=0, u_{c}=1, w_{c}=0, b_{f}=0, u_{f}=0, w_{f}=0, b_{i}=0, u_{i}=0, w_{i}=0, b_{o}=0, u_{o}=0, w_{o}=0 \\
f[t]=\sigma\left(u_{f} x_{t}+w_{f} z_{t-1}+b_{f}\right), \quad i[t]=\sigma\left(u_{i} x_{t}+w_{i} z_{t-1}+b_{i}\right), \quad o[t]=\sigma\left(u_{o} x_{t}+w_{o} z_{t-1}+b_{o}\right) \\
c[t]=f[t] c[t-1]+i[t] \sigma\left(u_{c} x_{t}+w_{c} z_{t-1}+b_{c}\right), \quad z_{t}=o[t] c[t]
\end{gathered}
$$

Assume that $c[t]=0$ for $t \leq 0$. Express z_{t} in terms of $\sigma\left(x_{t}\right)$ for $0 \leq t \leq 100$. Your answer should NOT contain any of the variables $c[t], f[t], i[t]$, or $o[t]$. Your answer may contain a summation $\left(\sum\right)$. You may find it useful to know that $\sigma(0)=\frac{1}{2}$.
2. (20 points) In class, we have been working with the exponential softmax function, but other forms exist. For example, the polynomial softmax function transforms inputs b_{ℓ} into outputs z_{ℓ} according to

$$
z_{\ell}=\frac{b_{\ell}^{p}}{\sum_{k} b_{k}^{p}},
$$

for some constant integer power, p. The cross-entropy loss is

$$
E=-\sum_{\ell} \zeta_{\ell} \ln z_{\ell}, \quad \zeta_{\ell}= \begin{cases}1 & \ell=\ell^{*} \\ 0 & \text { otherwise }\end{cases}
$$

Find $\frac{\partial E}{\partial b_{j}}$ for all j.
3. (20 points) Suppose you have a 10-pixel input image, $x[n]$. This is processed by a one-pixel "convolution" (really just multiplication by a scalar coefficient, w), followed by a stride- 2 max pooling layer, thus:

$$
\begin{aligned}
& a[n]=w x[n], \quad 1 \leq n \leq 10 \\
& y[k]=\max \left(0, \max _{2 k-1 \leq n \leq 2 k} a[n]\right), 1 \leq k \leq 5
\end{aligned}
$$

Suppose you know the input $x[n]$, and you know $\epsilon[k]=\frac{\partial E}{\partial y[k]}$. Find $\frac{\partial E}{\partial w}$ in terms of $x[n]$ and $\epsilon[k]$.
4. (20 points) Suppose that you have a training dataset with n training tokens $\left\{\left(\vec{x}_{1}, \zeta_{1}\right), \ldots,\left(\vec{x}_{n}, \zeta_{n}\right)\right\}$, where $\vec{x}_{i}=\left[x_{i 1}, \ldots, x_{i p}\right]^{T}$, and $\zeta_{i} \in\{0,1\}$. You have a one-layer neural network that tries to approximate ζ_{i} with z_{i}, computed as $z_{i}=\sigma\left(\vec{w}^{T} \vec{x}_{i}\right)$, where $\sigma(\cdot)$ is the logistic function, and \vec{w} is a weight vector. Suppose that you want to maximize the accuracy of z_{i}, but you also want to make $\vec{w}^{T} \vec{x}_{i}$ as small as possible. One way to do this is by using a two-part error metric,

$$
E=-\frac{1}{n} \sum_{i=1}^{n}\left(\zeta_{i} \ln z_{i}+\left(1-\zeta_{i}\right) \ln \left(1-z_{i}\right)\right)+\frac{1}{2 n} \sum_{i=1}^{n}\left(\vec{w}^{T} \vec{x}_{i}\right)^{2}
$$

Find $\nabla_{\vec{w}} E$, the gradient of E with respect to \vec{w}.
5. (20 points) Consider a scalar LSTM, with a scalar memory cell, input gate, output gate, and forget gate, related to one another by scalar coefficients $a_{i}, b_{i}, a_{o}, b_{o}, a_{f}, b_{f}, a_{c}, b_{c}$ as follows:

$$
\begin{aligned}
i[n] & =\text { input gate }=\sigma\left(b_{i} x[n]+a_{i} c[n-1]\right), \quad 1 \leq n \\
o[n] & =\text { output gate }=\sigma\left(b_{o} x[n]+a_{o} c[n-1]\right), \quad 1 \leq n \\
f[n] & =\text { forget gate }=\sigma\left(b_{f} x[n]+a_{f} c[n-1]\right), \quad 1 \leq n \\
c[n] & =f[n] c[n-1]+i[n]\left(b_{c} x[n]+a_{c} c[n-1]\right), 1 \leq n \\
y[n] & =o[n] c[n], \quad 1 \leq n
\end{aligned}
$$

Suppose that the network is initialized with $b_{i}=b_{o}=b_{f}=a_{i}=a_{o}=a_{f}=a_{c}=0$, and $c[0]=0$. In fact, the only nonzero coefficient is $b_{c}=1$. Under this condition, find a formula for $y[n]$ in terms of the values of $x[m], 1 \leq m \leq n$. No variables other than $x[m]$ should appear in your answer. HINT: $\sigma(0)=1 / 2$.
6. (20 points) In class, we have been working with nodes in layers, but a neural net can also be defined as a fully-connected graph, with every node connected to every other node. For example, suppose there is a scalar input x, and

$$
\begin{aligned}
y_{0} & =x \\
a_{\ell} & =\sum_{k=0}^{\ell-1} w_{\ell k} y_{k}, \quad 1 \leq \ell \leq L \\
y_{\ell} & =\sigma\left(a_{\ell}\right), \quad 1 \leq \ell \leq L \\
E & =\frac{1}{2} \sum_{\ell=1}^{L}\left(y_{\ell}-y_{\ell}^{*}\right)^{2}
\end{aligned}
$$

Define the back-propagation error to be $\delta_{\ell}=\frac{d E}{d a_{\ell}}$. Find an algorithm that computes δ_{ℓ} for all $1 \leq \ell \leq L$.
7. (20 points) A convolutional layer leads to convolutional back-propagation. In the neural net literature, however, convolution is sometimes replaced (without comment!) by correlation, resulting in something like the following, where $x\left[m_{1}, m_{2}\right]$ is the input and $u\left[m_{1}, m_{2}\right]$ are the network weights:

$$
a\left[n_{1}, n_{2}\right]=\sum_{m_{1}} \sum_{m_{2}} u\left[m_{1}-n_{1}, m_{2}-n_{2}\right] x\left[m_{1}, m_{2}\right]
$$

Suppose the error, E, is some function whose partial derivatives $\epsilon\left[n_{1}, n_{2}\right]=\frac{\partial E}{\partial a\left[n_{1}, n_{2}\right]}$ are known. Define $\delta\left[m_{1}, m_{2}\right]=\frac{\partial E}{\partial x\left[m_{1}, m_{2}\right]}$. Find $\delta\left[m_{1}, m_{2}\right]$ in terms of $\epsilon\left[n_{1}, n_{2}\right]$.
8. (20 points) Suppose you have a dataset containing audio waveforms, \vec{x}_{i}, each matched with two different one-hot label vectors. The label vector $\vec{y}_{i}^{*}=\left[y_{i 1}^{*}, \ldots, y_{i q}^{*}\right]^{T}$, where $y_{i j}^{*} \in\{0,1\}$, is approximated by the network output $\vec{y}_{i}=\left[y_{i 1}, \ldots, y_{i q}\right]^{T}$, where $y_{i j} \in(0,1)$. The label vector $\vec{z}_{i}^{*}=\left[z_{i 1}^{*}, \ldots, z_{i r}^{*}\right]^{T}$, where $z_{i j}^{*} \in\{0,1\}$, is approximated by the network output $\vec{z}_{i}=\left[z_{i 1}, \ldots, z_{i r}\right]^{T}$, where $z_{i j} \in(0,1)$. Both \vec{y}_{i} and \vec{z}_{i} are functions of a hidden nodes vector \vec{h}_{i} as

$$
\begin{aligned}
\vec{h}_{i} & =g\left(W \vec{x}_{i}\right) \\
\vec{y}_{i} & =\operatorname{softmax}\left(U \vec{h}_{i}\right) \\
\vec{z}_{i} & =\operatorname{softmax}\left(V \vec{h}_{i}\right)
\end{aligned}
$$

where U, V and W are trainable weight matrices, and $g(\cdot)$ is some scalar nonlinearity. Find an error metric E such that, by minimizing E, you can:

- maximize the accuracy of \vec{y}_{i} as an estimate of \vec{y}_{i}^{*}
- minimize the accuracy of \vec{z}_{i} as an estimate of \vec{z}_{i}^{*}

9. (20 points) Consider an LSTM defined by

$$
\begin{aligned}
\vec{i}[n] & =\text { input gate }=\sigma\left(B_{i} \vec{x}[n]+A_{i} \vec{c}[n-1]\right) \\
\vec{o}[n] & =\text { output gate }=\sigma\left(B_{o} \vec{x}[n]+A_{o} \vec{c}[n-1]\right) \\
\vec{f}[n] & =\text { forget gate }=\sigma\left(B_{f} \vec{x}[n]+A_{f} \vec{c}[n-1]\right) \\
\vec{c}[n] & =\vec{f}[n] \odot c[n-1]+\vec{i}[n] \odot g\left(B_{c} \vec{x}[n]+A_{c} \vec{c}[n-1]\right) \\
\vec{y}[n] & =\vec{o}[n] \odot \vec{c}[n]
\end{aligned}
$$

where the vector cell is $\vec{c}[n]=\left[c_{1}[n], \ldots, c_{p}[n]\right]^{T}$, and where \odot denotes the Hadamard (array) product, e.g., $\vec{o}[n] \odot \vec{c}[n]=\left[o_{1}[n] c_{1}[n], \ldots, o_{p}[n] c_{p}[n]\right]^{T}$. Find the derivative $\frac{\partial c_{j}[n]}{\partial c_{k}[n-1]}$.
10. (20 points) A particular two-layer neural network accepts a two-dimensional input vector $\vec{x}=$ $\left[x_{1}, x_{2}, 1\right]^{T}$, and generates an output $z=h\left(\vec{v}^{T} g(U \vec{x})\right)$. Choose network weights \vec{v} and U, and element-wise scalar nonlinearities $h()$ and $g()$, that will generate the following output:

$$
z= \begin{cases}1 & \left|x_{1}\right|<2 \text { and }\left|x_{2}\right|<2 \\ -1 & \text { otherwise }\end{cases}
$$

11. (20 points) Your training database contains matched pairs $\left\{\left(\vec{x}_{1}, \vec{y}_{1}\right), \ldots,\left(\vec{x}_{n}, \vec{y}_{n}\right)\right\}$ where \vec{x}_{i} is the $i^{\text {th }}$ observation vector, and \vec{y}_{i} is the $i^{\text {th }}$ label vector. For some initial weight matrix $W=\left[\begin{array}{cc}w_{11} & \ldots \\ \ldots & w_{q p}\end{array}\right]$, you have already computed the following two quantities:

$$
\begin{align*}
f_{\ell}\left(\vec{x}_{i}, W\right) & 1 \leq \ell \leq r, 1 \leq i \leq n \tag{1}\\
\frac{\partial f_{\ell}\left(\vec{x}_{i}, W\right)}{\partial w_{k j}} & 1 \leq \ell \leq r, 1 \leq k \leq q, 1 \leq j \leq p, 1 \leq i \leq n \tag{2}
\end{align*}
$$

You want to find a new matrix $W^{\prime}=\left[\begin{array}{cc}w_{11}^{\prime} & \ldots \\ \ldots & w_{q p}^{\prime}\end{array}\right]$ such that $\mathcal{J}\left(W^{\prime}\right) \geq \mathcal{J}(W)$ (that is, you want to maximize \mathcal{J}), where

$$
\mathcal{J}(W)=\sum_{i=1}^{n} \sum_{\ell=1}^{r} y_{\ell, i} \ln \left(f_{\ell}\left(\vec{x}_{i}, W\right)\right)
$$

Give a formula for $w_{k j}^{\prime}$ in terms of $w_{k j}, f_{\ell}\left(\vec{x}_{i}, W\right), \frac{\partial f_{\ell}\left(\vec{x}_{i}, W\right)}{\partial w_{k j}}$, and in terms of a step size, η, such that for suitable values of $\eta, \mathcal{J}\left(W^{\prime}\right) \geq \mathcal{J}(W)$.

