ECE 417 Multimedia Signal Processing

Spring 2021

EXAM 2

Tuesday, November 2, 2021

- This is a CLOSED BOOK exam.
- You are permitted one sheet of handwritten notes, 8.5×11.
- Calculators and computers are not permitted.
- If you're taking the exam online, you will need to have your webcam turned on. The exam will be posted to zoom at exactly 9:30am; you will need to photograph and upload your answers to Gradescope by exactly 11:00am.
- There are a total of 100 points in the exam. Each problem specifies its point total. Plan your work accordingly.
- You must SHOW YOUR WORK to get full credit.
- The second page is a formula sheet.
- Do not simplify explicit numerical expressions. The expression " $e^{-5} \cos (3)$ " is a MUCH better answer than "-0.00667".

Name: \qquad

Gaussians and GMMs

$$
\begin{gathered}
p_{\vec{X}}(\vec{x})=\frac{1}{(2 \pi)^{D / 2}|\Sigma|^{1 / 2}} e^{-\frac{1}{2}(\vec{x}-\vec{\mu})^{T} \Sigma^{-1}(\vec{x}-\vec{\mu})} \\
p_{\vec{X}}(\vec{x})=\sum_{k=0}^{K-1} c_{k} \mathcal{N}\left(\vec{x} \mid \vec{\mu}_{k}, \Sigma_{k}\right)
\end{gathered}
$$

Principal Component Analysis

$$
\begin{gathered}
(n-1) \Sigma=V \Lambda V^{T}, \quad \frac{1}{n-1} \Lambda=V^{T} \Sigma V, \quad V^{T} V=V V^{T}=I \\
\sum_{d=1}^{D} \sigma_{d}^{2}=\frac{1}{n-1} \operatorname{trace}\left(X^{T} X\right)=\frac{1}{n-1} \operatorname{trace}\left(Y^{T} Y\right)=\frac{1}{n-1} \sum_{d=1}^{D} \lambda_{d} \\
\Lambda=V^{T}\left(X^{T} X\right) V=U^{T}\left(X X^{T}\right) U
\end{gathered}
$$

Expectation Maximization

$$
Q(\Theta, \hat{\Theta})=E\left[\ln p\left(\mathcal{D}_{v}, \mathcal{D}_{h} \mid \Theta\right) \mid \mathcal{D}_{v}, \hat{\Theta}\right]
$$

Hidden Markov Model

$$
\begin{gathered}
\alpha_{t}(j)=\sum_{i=1}^{N} \alpha_{t-1}(i) a_{i j} b_{j}\left(\vec{x}_{t}\right), 1 \leq j \leq N, 2 \leq t \leq T \\
\beta_{t}(i)=\sum_{j=1}^{N} a_{i j} b_{j}\left(\vec{x}_{t+1}\right) \beta_{t+1}(j), \quad 1 \leq i \leq N, 1 \leq t \leq T-1 \\
\tilde{\alpha}_{t}(j)=\sum_{i=1}^{N} \hat{\alpha}_{t-1}(i) a_{i j} b_{j}\left(\vec{x}_{t}\right) \\
g_{t}=\sum_{j=1}^{N} \tilde{\alpha}_{t}(j) \\
\hat{\alpha}_{t}(j)=\frac{1}{g_{t}} \tilde{\alpha}_{t}(j) \\
\gamma_{t}(i)=\frac{\alpha_{t}(i) \beta_{t}(i)}{\sum_{k=1}^{N} \alpha_{t}(k) \beta_{t}(k)} \\
\xi_{t}(i, j)=\frac{\alpha_{t}(i) a_{i j} b_{j}\left(\vec{x}_{t+1}\right) \beta_{t+1}(j)}{\sum_{k=1}^{N} \sum_{\ell=1}^{N} \alpha_{t}(k) a_{k \ell} b_{\ell}\left(\vec{x}_{t+1}\right) \beta_{t+1}(\ell)} \\
\sum_{i}^{\prime}=\frac{\sum_{t=1}^{T} \gamma_{t}(i)\left(\vec{x}_{t}-\vec{\mu}_{i}\right)\left(\vec{x}_{t}-\vec{\mu}_{i}\right)^{T}}{\sum_{t=1}^{T} \gamma_{t}(i)} \\
\sum_{i j}^{N}=\frac{\sum_{t=1}^{T-1} \xi_{t}(i, j)}{\sum_{t=1}^{T-1} \xi_{t}(i, j)} \\
\sum_{t=1}^{T} \gamma_{t}(i) \vec{x}_{t} \\
\sum_{t=1}^{T} \gamma_{t}(i) \\
\mu_{i}
\end{gathered}
$$

1. (15 points) Suppose $\vec{X}=\left[X_{1}, X_{2}\right]^{T}$ is a Gaussian random variable with mean and covariance matrix given by

$$
\vec{\mu}=\left[\begin{array}{l}
3 \\
1
\end{array}\right], \quad \Sigma=\left[\begin{array}{ll}
1 & 0 \\
0 & 4
\end{array}\right]
$$

Sketch the set of points such that $p_{\vec{X}}(\vec{x})=\frac{1}{4 \pi} e^{-\frac{1}{2}}$, where $p_{\vec{X}}(\vec{x})$ is the pdf of \vec{X}. Clearly label at least four of the points included in this set.

Solution: The set should be an ellipse, centered at $[3,1]^{T}$. The following four points are included in the set:

$$
\left[\begin{array}{l}
2 \\
1
\end{array}\right], \quad\left[\begin{array}{l}
4 \\
1
\end{array}\right], \quad\left[\begin{array}{c}
3 \\
-1
\end{array}\right], \quad\left[\begin{array}{l}
3 \\
3
\end{array}\right]
$$

2. (20 points) The binary random variable Y has the following prior distribution:

$$
p_{Y}(0)=a, \quad p_{Y}(1)=1-a
$$

The random vector \vec{X} depends on Y, with the conditionally Gaussian pdf $p_{\vec{X} \mid Y}(\vec{x} \mid y)=\mathcal{N}\left(\vec{x} ; \vec{\mu}_{y}, \Sigma_{y}\right)$, where the mean vectors and covariance matrices are given by

$$
\vec{\mu}_{0}=\left[\begin{array}{l}
b \\
c
\end{array}\right], \quad \vec{\mu}_{1}=\left[\begin{array}{l}
d \\
e
\end{array}\right], \quad \Sigma_{0}=\Sigma_{1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Given a sample measurement of $\vec{X}=\vec{x}$, it's possible to infer the value of $Y=\hat{y}$ with minimum probability of error using the following decision rule:

$$
\hat{y}= \begin{cases}1 & \text { if } \vec{w}^{T} \vec{x}+\beta>0 \\ 0 & \text { otherwise }\end{cases}
$$

Find \vec{w} and β in terms of the constants a, b, c, d, e.

Solution:

$$
\begin{gathered}
\vec{w}=\left[\begin{array}{l}
d-b \\
e-c
\end{array}\right] \\
\beta=\ln (1-a)-\ln (a)-\frac{1}{2}\left(d^{2}+e^{2}\right)+\frac{1}{2}\left(b^{2}+c^{2}\right)
\end{gathered}
$$

3. (30 points) A particular unlabeled dataset, $\mathcal{D}=\left\{\vec{x}_{1}, \ldots, \vec{x}_{n}\right\}$ has been centered so that the sample mean is $\vec{\mu}=[0,0]^{T}$. The sample covariance matrix, Σ has the following value, and the following eigenvalue decomposition:

$$
\Sigma=\left[\begin{array}{cc}
4 & -2 \\
-2 & 5
\end{array}\right]=\left[\begin{array}{cc}
-0.79 & 0.62 \\
-0.62 & -0.79
\end{array}\right]\left[\begin{array}{cc}
2.44 & 0 \\
0 & 6.56
\end{array}\right]\left[\begin{array}{cc}
-0.79 & -0.62 \\
0.62 & -0.79
\end{array}\right]
$$

Suppose you want to find a unit-length vector \vec{v} that makes the quantity \mathcal{J}, defined in the following equation, as large as possible:

$$
\vec{v}=\arg \max \mathcal{J} \text { s.t. }\|\vec{v}\|=1 \text { and } \mathcal{J}=\frac{\sum_{i=1}^{n}\left(\vec{v}^{T} \vec{x}_{i}\right)^{2}}{\sum_{i=1}^{n}\left\|\vec{x}_{i}\right\|^{2}}
$$

(a) What is the numerical value of \vec{v} that maximizes \mathcal{J} ? You may leave your answer as an explicit function of numerical quantities, if you wish.

Solution:

$$
\vec{v}=\left[\begin{array}{c}
0.62 \\
-0.79
\end{array}\right]
$$

(b) What is the maximum achievable numerical value of \mathcal{J} ? You may leave your answer as an explicit function of numerical quantities, if you wish.

Solution:

$$
\mathcal{J}=\frac{6.56}{6.56+2.44}
$$

(c) The gram matrix is an $n \times n$ matrix, G, whose $(i, j)^{\text {th }}$ element is

$$
G[i, j]=\vec{x}_{i}^{T} \vec{x}_{j}
$$

In terms of n, what are the eigenvalues of G ?
Solution: The first two eigenvalues of G are $\lambda_{1}=6.56(n-1)$ and $\lambda_{2}=2.44(n-1)$. Since it was not specified whether the sample covariance is biased or unbiased, the answers $\lambda_{1}=6.56 n$ and $\lambda_{2}=2.44 n$ are also considered correct. The remaining $n-2$ eigenvalues are all zero.
4. (20 points) An HMM has the parameters $\Lambda=\left\{\pi_{i}, a_{i, j}, b_{j}\left(\vec{x}_{t}\right): 1 \leq i, j \leq N, 1 \leq t \leq T\right\}$, with the standard definitions:

$$
\begin{aligned}
\pi_{i} & =p\left(q_{1}=i\right) \\
a_{i, j} & =p\left(q_{t}=j \mid q_{t-1}=i\right) \\
b_{j}\left(\vec{x}_{t}\right) & =p\left(\vec{x}=\vec{x}_{t} \mid q_{t}=j\right),
\end{aligned}
$$

where q_{t} is the state index at time t. Suppose you have software available that will compute the forward, backward, scaled forward, and/or scaled backward algorithm for you, and will therefore provide you with any or all of the following quantities, for any values of $1 \leq i, j \leq N$ and $1 \leq t \leq T$:

$$
\begin{aligned}
\alpha_{t}(i) & =p\left(\vec{x}_{1}, \ldots, \vec{x}_{t}, q_{t}=i \mid \Lambda\right) \\
\beta_{t}(i) & =p\left(\vec{x}_{t+1}, \ldots, \vec{x}_{T} \mid q_{t}=i, \Lambda\right) \\
\hat{\alpha}_{t}(i) & =p\left(q_{t}=i \mid \vec{x}_{1}, \ldots, \vec{x}_{t}, \Lambda\right) \\
g_{t} & =p\left(\vec{x}_{t} \mid \vec{x}_{1}, \ldots, \vec{x}_{t-1}, \Lambda\right) \\
\hat{\beta}_{t}(i) & =\beta_{t}(i) / \max _{j} \beta_{t}(j)
\end{aligned}
$$

In terms of $\pi_{i}, a_{i j}, b_{j}\left(\vec{x}_{t}\right), \alpha_{t}(i), \beta_{t}(i), \hat{\alpha}_{t}(i), g_{t}$, and/or $\hat{\beta}_{t}(i)$, find a formula for the following quantity, assuming that T is much larger than 19:

$$
p\left(q_{16}=4, q_{17}=5 \mid \vec{x}_{1}, \ldots, \vec{x}_{18}, \Lambda\right)
$$

Solution:

$$
\begin{aligned}
p\left(q_{16}=4, q_{17}=5 \mid \vec{x}_{1}, \ldots, \vec{x}_{18}, \Lambda\right) & =\frac{p\left(q_{16}=4, q_{17}=5, \vec{x}_{17}, \vec{x}_{18} \mid \vec{x}_{1}, \ldots, \vec{x}_{16}, \Lambda\right)}{p\left(\vec{x}_{17}, \vec{x}_{18} \mid \vec{x}_{1}, \ldots, \vec{x}_{16}, \Lambda\right)} \\
& =\frac{\sum_{k=1}^{N} \hat{\alpha}_{16}(4) a_{4,5} b_{5}\left(\vec{x}_{17}\right) a_{5, k} b_{k}\left(\vec{x}_{18}\right)}{\sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{k=1}^{N} \hat{\alpha}_{16}(i) a_{i, j} b_{j}\left(\vec{x}_{17}\right) a_{j, k} b_{k}\left(\vec{x}_{18}\right)} \\
& =\frac{\sum_{k=1}^{N} \hat{\alpha}_{16}(4) a_{4,5} b_{5}\left(\vec{x}_{17}\right) a_{5, k} b_{k}\left(\vec{x}_{18}\right)}{g_{17} g_{18}}
\end{aligned}
$$

The last two lines are just three different valid ways to write the denominator. Other valid solutions include

$$
\begin{aligned}
p\left(q_{16}=4, q_{17}=5 \mid \vec{x}_{1}, \ldots, \vec{x}_{18}, \Lambda\right) & =\frac{p\left(q_{16}=4, q_{17}=5, \vec{x}_{17}, \vec{x}_{18}, \vec{x}_{1}, \ldots, \vec{x}_{16} \mid \Lambda\right)}{p\left(\vec{x}_{17}, \vec{x}_{18}, \vec{x}_{1}, \ldots, \vec{x}_{16} \mid \Lambda\right)} \\
& =\frac{\sum_{k=1}^{N} \alpha_{16}(4) a_{4,5} b_{5}\left(\vec{x}_{17}\right) a_{5, k} b_{k}\left(\vec{x}_{18}\right)}{\sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{k=1}^{N} \alpha_{16}(i) a_{i, j} b_{j}\left(\vec{x}_{17}\right) a_{j, k} b_{k}\left(\vec{x}_{18}\right)} \\
& =\frac{\sum_{k=1}^{N} \alpha_{16}(4) a_{4,5} b_{5}\left(\vec{x}_{17}\right) a_{5, k} b_{k}\left(\vec{x}_{18}\right)}{\sum_{k=1}^{N} \alpha_{18}(k)}
\end{aligned}
$$

5. (15 points) A second-order HMM is like a standard HMM, except that the state at each time step depends on the two preceding states. The parameters are $\Lambda=\left\{\pi_{i, j}, a_{i, j, k}, b_{k}\left(\vec{x}_{t}\right): 1 \leq i, j, k \leq N, 1 \leq\right.$ $t \leq T\}$, with the definitions:

$$
\begin{aligned}
\pi_{i, j} & =p\left(q_{1}=i, q_{2}=j\right) \\
a_{i, j, k} & =p\left(q_{t}=k \mid q_{t-2}=i, q_{t-1}-j\right) \\
b_{k}\left(\vec{x}_{t}\right) & =p\left(\vec{x}=\vec{x}_{t} \mid q_{t}=k\right),
\end{aligned}
$$

where q_{t} is the state index at time t. Suppose you have software available that will compute the forward and backward algorithms for you, and will therefore provide you with the following quantities, for any values of $1 \leq i, j \leq N$ and $2 \leq t \leq T$:

$$
\begin{aligned}
\alpha_{t}(i, j) & =p\left(\vec{x}_{1}, \ldots, \vec{x}_{t}, q_{t-1}=i, q_{t}=j \mid \Lambda\right) \\
\beta_{t}(i, j) & =p\left(\vec{x}_{t+1}, \ldots, \vec{x}_{T} \mid q_{t-1}=i, q_{t}=j, \Lambda\right)
\end{aligned}
$$

In terms of $\pi_{i, j}, a_{i, j, k}, b_{k}\left(\vec{x}_{t}\right), \alpha_{t}(i, j)$, and/or $\beta_{t}(i, j)$, find the following expected value:

$$
\mathbb{E}\left[\# \text { times, } t, \text { for which } q_{t-2}=i, q_{t-1}=j, q_{t}=k \mid \vec{x}_{1}, \ldots, \vec{x}_{T}, \Lambda\right]
$$

Solution:

$$
\begin{aligned}
& \mathbb{E}\left[\# \text { times that } q_{t-2}=i, q_{t-1}=j, q_{t}=k \mid \vec{x}_{1}, \ldots, \vec{x}_{T}, \Lambda\right] \\
& =\sum_{t=3}^{T} p\left(q_{t-2}=i, q_{t-1}=j, q_{t}=k \mid \vec{x}_{1}, \ldots, \vec{x}_{T}, \Lambda\right) \\
& =\sum_{t=3}^{T} \alpha_{t-1}(i, j) a_{i, j, k} b_{k}\left(\vec{x}_{t}\right) \beta_{t}(j, k)
\end{aligned}
$$

