EXAM 1

Tuesday, September 28, 2021

- This is a CLOSED BOOK exam.
- You are permitted one sheet of handwritten notes, 8.5×11.
- Calculators and computers are not permitted.
- If you're taking the exam online, you will need to have your webcam turned on. Your exam will appear on Gradescope at exactly $9: 30 \mathrm{am}$; you will need to photograph and upload your answers by exactly 11:00am.
- There are a total of 100 points in the exam. Each problem specifies its point total. Plan your work accordingly.
- You must SHOW YOUR WORK to get full credit.
- The last page is a formula sheet, which you may tear off, if you wish.

Name: \qquad

Page 2

1. (20 points) So far, we have worked almost exclusively with real-valued signals, but this problem will work with complex-valued signals. Consider the filter

$$
y[n]=x[n]+r e^{j \theta} y[n-1],
$$

where r and θ are both real numbers, $0<r<1,0<\theta<\pi$. Obviously, if $x[n]$ is a real-valued signal, $y[n]$ will be complex-valued.
(a) In terms of r and θ, what is the frequency response of this filter?

Solution:

$$
H(\omega)=\frac{1}{1-r e^{j \theta} e^{-j \omega}}
$$

(b) In terms of r and θ, what is the impulse response of this filter?

Solution:

$$
h[n]=r^{n} e^{j \theta n} u[n]
$$

2. (10 points) Suppose you are given two signals, $x[n]$ and $y[n]$. You want to create an M-tap filter, $a[n]$ such that $\hat{y}[n]=a[n] * x[n]$ is a good estimate of $y[n]$, in the sense that it minimizes the sum-squared error:

$$
\varepsilon=\sum_{n=-\infty}^{\infty}(y[n]-\hat{y}[n])^{2}
$$

where

$$
\hat{y}[n]=\sum_{m=0}^{M-1} a[m] x[n-m]
$$

Assume that $x[n]$ and $y[n]$ are known; find a set of M linear equations that can be solved to find the M coefficients, $a[0]$ through $a[M-1]$. You don't need to simplify or invent any special notation; just find M equations in M unknowns.

Solution: The M equations are:

$$
\sum_{n=-\infty}^{\infty}\left(y[n]-\sum_{m=0}^{M-1} a[m] x[n-m]\right) x[n-k]=0, \quad 0 \leq k \leq M-1
$$

3. (20 points) Suppose that $x\left[n_{1}, n_{2}\right]$ is an infinite-sized grayscale gradient image, with the following content:

$$
x\left[n_{1}, n_{2}\right]=255-\frac{n_{1}}{1000}
$$

The following three parts specify three different ways in which the image might be filtered. Here $*_{1}$ denotes convolution in the n_{1} direction, $*_{2}$ denotes convolution in the n_{2} direction, and $*$ denotes twodimensional convolution.
(a)

$$
\begin{aligned}
h[n] & =0.5 \delta[n+1]-0.5 \delta[n-1] \\
g_{1}\left[n_{1}, n_{2}\right] & =h\left[n_{1}\right] *_{1} x\left[n_{1}, n_{2}\right]
\end{aligned}
$$

Find $g_{1}\left[n_{1}, n_{2}\right]$ as a function of n_{1} and/or n_{2}.

Solution:

$$
\begin{aligned}
g_{1}\left[n_{1}, n_{2}\right] & =0.5 x\left[n_{1}+1, n_{2}\right]-0.5 x\left[n_{1}-1, n_{2}\right] \\
& =-0.5 \frac{n_{1}+1}{1000}+0.5 \frac{n_{1}-1}{1000} \\
& =-\frac{1}{1000}
\end{aligned}
$$

(b)

$$
\begin{aligned}
h[n] & =0.5 \delta[n+1]-0.5 \delta[n-1] \\
g_{2}\left[n_{1}, n_{2}\right] & =h\left[n_{2}\right] *_{2} x\left[n_{1}, n_{2}\right]
\end{aligned}
$$

Find $g_{2}\left[n_{1}, n_{2}\right]$ as a function of n_{1} and/or n_{2}.

Solution:

$$
\begin{aligned}
g_{1}\left[n_{1}, n_{2}\right] & =0.5 x\left[n_{1}, n_{2}+1\right]-0.5 x\left[n_{1}, n_{2}-1\right] \\
& =0
\end{aligned}
$$

Problem 3 cont'd

(c)

$$
\begin{aligned}
h[n] & =0.1 \delta[n+2]+0.3 \delta[n+1]+0.5 \delta[n]+0.3 \delta[n-1]+0.1 \delta[n-2] \\
y\left[n_{1}, n_{2}\right] & =h\left[n_{2}\right] *_{2} x\left[n_{1}, n_{2}\right]
\end{aligned}
$$

Find $y\left[n_{1}, n_{2}\right]$ as a function of n_{1} and/or n_{2}.

Solution:

$$
\begin{aligned}
y\left[n_{1}, n_{2}\right] & =\sum_{m} h[m] x\left[n_{1}, n_{2}-m\right] \\
& =\left(255-\frac{n_{1}}{1000}\right) \sum_{m} h[m] \\
& =1.3\left(255-\frac{n_{1}}{1000}\right)
\end{aligned}
$$

4. (20 points) Suppose you start with a 2×2 image:

$$
x\left[n_{1}, n_{2}\right]=\left\{\begin{array}{llll}
a & n_{1}=0, n_{2}=0, & b & n_{1}=0, n_{2}=1 \\
c & n_{1}=1, n_{2}=0, & d & n_{1}=1, n_{2}=1 \\
0 & \text { otherwise }
\end{array}\right.
$$

This image is upsampled by a factor of five, then lowpass filtered, thus

$$
\begin{aligned}
& y\left[n_{1}, n_{2}\right]= \begin{cases}x\left[\frac{n_{1}}{5}, \frac{n_{2}}{5}\right] & \frac{n_{1}}{5}, \frac{n_{2}}{5} \text { both integers } \\
0 & \text { otherwise }\end{cases} \\
& z\left[n_{1}, n_{2}\right]=h\left[n_{1}, n_{2}\right] * y\left[n_{1}, n_{2}\right]
\end{aligned}
$$

In each of the following three cases, find the value of $z[2,4]$ in terms of the constants a, b, c, d.
(a)

$$
h\left[n_{1}, n_{2}\right]= \begin{cases}1 & 0 \leq n_{1}<5,0 \leq n_{2}<5 \\ 0 & \text { otherwise }\end{cases}
$$

In terms of a, b, c, d, what is $z[2,4]$?

Solution:

$$
z[2,4]=a
$$

(b)

$$
h\left[n_{1}, n_{2}\right]= \begin{cases}\left(1-\frac{\left|n_{1}\right|}{5}\right)\left(1-\frac{\left|n_{2}\right|}{5}\right) & -5 \leq n_{1} \leq 5,-5 \leq n_{2} \leq 5 \\ 0 & \text { otherwise }\end{cases}
$$

In terms of a, b, c, d, what is $z[2,4]$? Do not simplify explicit numerical expressions.

Solution:

$$
z[2,4]=\left(\frac{3}{5}\right)\left(\frac{1}{5}\right) a+\left(\frac{3}{5}\right)\left(\frac{4}{5}\right) b+\left(\frac{2}{5}\right)\left(\frac{1}{5}\right) c+\left(\frac{2}{5}\right)\left(\frac{4}{5}\right) d
$$

Problem 4 cont'd

(c)

$$
h\left[n_{1}, n_{2}\right]=\left(\frac{\sin \left(0.2 \pi n_{1}\right)}{0.2 \pi n_{1}}\right)\left(\frac{\sin \left(0.2 \pi n_{2}\right)}{0.2 \pi n_{2}}\right)
$$

You may find it useful to know that

$$
\frac{\sin (0.2 \pi n)}{0.2 \pi n} \approx\left\{\begin{array}{llll}
1 & n=0, & 0.94 & n=1 \\
0.76 & n=2, & 0.50 & n=3 \\
0.23 & n=4, & 0.0 & n=5
\end{array}\right.
$$

In terms of a, b, c, d, what is $z[2,4]$? Do not simplify explicit numerical expressions.

Solution:

$$
z[2,4]=(0.76)(0.23) a+(0.76)(0.94) b+(0.50)(0.23) c+(0.50)(0.94) d
$$

5. (20 points) Consider the following matrices and vectors:

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right], \quad \vec{f}=\left[\begin{array}{l}
f \\
g
\end{array}\right], \quad \vec{u}=\left[\begin{array}{l}
u \\
v
\end{array}\right]
$$

In both parts of this problem, the matrix A and the vector \vec{f} are known, but the vector \vec{u} is unknown. In both parts of this problem, you may assume that A is invertible. In both parts of this problem, your task will be to find equations that can be solved to find the two unknowns u and v in terms of the known quantities A and \vec{f}.
(a) For this part of the problem, suppose that f and g are the eigenvalues of A, and are already known. Suppose that \vec{u} is the eigenvector whose eigenvalue is f, and suppose that, therefore, we assume that $u^{2}+v^{2}=1$ and $u \geq 0$. Under these assumptions, find an equation that can be solved to find \vec{u}. You may express your equation in terms of A, \vec{f}, and \vec{u}, and/or in terms of any or all of their scalar elements.

Solution:

$$
f \vec{u}=A \vec{u}
$$

(b) For this part of the problem, none of the assumptions in part (a) are still true. Instead, suppose that \vec{u} has been chosen to minimize the following function:

$$
\vec{u}^{T} A \vec{u}+3 \vec{u}^{T} \vec{f}+15
$$

Under these assumptions, find an equation that can be solved to find \vec{u}. You may express your equation in terms of A, \vec{f}, and \vec{u}, and/or in terms of any or all of their scalar elements.

Solution:

$$
2\left(A+A^{T}\right) \vec{u}+3 \vec{f}=0
$$

6. (10 points) Suppose that you are watching a movie in which the camera is floating to the left at a rate of approximately four columns per frame, so that the optical flow field is uniform everywhere as

$$
\vec{v}=\left[\begin{array}{l}
v_{r} \\
v_{c}
\end{array}\right]=\left[\begin{array}{c}
0 \\
-4
\end{array}\right]
$$

Suppose that the image $f[r, c]$ is a grayscale gradient, bright at the top right, and dark at the bottom left, i.e.,

$$
f[r, c]=128\left(1+\frac{c}{640}-\frac{r}{480}\right)
$$

What is $\frac{\partial f}{\partial t}$, the change in pixel intensity, as a function of r and c ? Note: do not simplify explicit numerical expressions.

Solution: The gradient of the image is

$$
\nabla f=\left[\begin{array}{c}
\frac{\partial f}{\partial r} \\
\frac{\partial f}{\partial c}
\end{array}\right]=\left[\begin{array}{c}
128 / 480 \\
-128 / 640
\end{array}\right]
$$

Plugging this into the optical flow equation, we get

$$
\begin{aligned}
\frac{\partial f}{\partial t} & =-(\nabla f)^{T} \vec{v} \\
& =4 \times 128 / 640
\end{aligned}
$$

Signal Processing

$$
\begin{gathered}
y[n]=G x[n]+\sum_{m=1}^{N} a_{m} y[n-m]=h[n] * x[n] \\
H(z)=\frac{1}{1-\sum_{m=1}^{N} a_{m} z^{-m}}=\frac{1}{\prod_{k=1}^{N}\left(1-p_{k} z^{-1}\right)}=\sum_{k=1}^{N} \frac{C_{k}}{1-p_{k} z^{-1}} \\
h[n]=\sum_{k=1}^{N} C_{k} p_{k}^{n} u[n]
\end{gathered}
$$

Linear Prediction

$$
\begin{gathered}
\mathcal{E}=\sum_{n=-\infty}^{\infty} e^{2}[n]=\sum_{n=-\infty}^{\infty}\left(s[n]-\sum_{m=1}^{p} a_{m} s[n-m]\right)^{2} \\
0=\sum_{n=-\infty}^{\infty}\left(s[n]-\sum_{m=1}^{p} a_{m} s[n-m]\right) s[n-k], \quad 1 \leq k \leq p \\
\vec{\gamma}=R \vec{a}
\end{gathered}
$$

Linear Algebra

If A symmetric, square and nonsingular then

$$
A=V \Lambda V^{T}, \quad \Lambda=V^{T} A V, \quad V V^{T}=V^{T} V=I
$$

If A is tall and thin, with full column rank, then

$$
A^{\dagger} \vec{b}=\operatorname{argmin}_{\vec{v}}\|\vec{b}-A \vec{v}\|^{2}=\left(A^{T} A\right)^{-1} A^{T} \vec{b}
$$

Image Filtering

$$
x\left[n_{1}, n_{2}\right] * h_{1}\left[n_{1}\right] h_{2}\left[n_{2}\right]=h_{1}\left[n_{1}\right] *_{1}\left(h_{2}\left[n_{2}\right] *_{2} x\left[n_{1}, n_{2}\right]\right)
$$

Image Interpolation

$$
\begin{gathered}
y\left[n_{1}, n_{2}\right]= \begin{cases}x\left[\frac{n_{1}}{U}, \frac{n_{2}}{U}\right] & \frac{n_{1}}{U}, \frac{n_{2}}{U} \text { both integers } \\
0 & \text { otherwise }\end{cases} \\
z\left[n_{1}, n_{2}\right]=h\left[n_{1}\right] *_{1}\left(h\left[n_{2}\right] *_{2} y\left[n_{1}, n_{2}\right]\right) \\
h_{\text {rect }}[n]=\left\{\begin{array}{ll}
1 & 0 \leq n<U \\
0 & \text { otherwise }
\end{array}, \quad h_{\text {tri }}[n]=\left\{\begin{array}{ll}
1-\frac{|n|}{U} & -U \leq n \leq U \\
0 & \text { otherwise }
\end{array}, \quad h_{\text {sinc }}[n]=\frac{\sin (\pi n / U)}{\pi n / U}\right.\right.
\end{gathered}
$$

Optical Flow

$$
-\frac{\partial f}{\partial t}=(\nabla f)^{T} \vec{v}
$$

