UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Department of Electrical and Computer Engineering

ECE 417 Multimedia Signal Processing
Spring 2021

PRACTICE EXAM 1

Exam will be Tuesday, September 28, 2021

- This will be a CLOSED BOOK exam.
- You will be permitted one sheet of handwritten notes, 8.5×11.
- Calculators and computers are not permitted.
- If you're taking the exam online, you will need to have your webcam turned on. Your exam will appear on Gradescope at exactly 9:30am; you will need to photograph and upload your answers by exactly 11:00am.
- There will be a total of 100 points in the exam. Each problem specifies its point total. Plan your work accordingly.
- You must SHOW YOUR WORK to get full credit.

1. (16 points) A 200×200 sunset image is bright on the bottom, and dark on top, thus the pixel in the $i^{\text {th }}$ row and $j^{\text {th }}$ column has intensity $A[i, j]=200-i$. Suppose that this formula extends past the edge of the image, and also extends to non-integer pixel locations, so you can assume that it holds for every real-valued coordinate value (i, j).
Suppose your goal is to recognize sunset images that have been taken by people laying upside-down on the beach. You decide to train the classifier by rotating the image $A[i, j]$ to every possible angle, thus creating the training images

$$
B_{k}[i, j]=A\left[i \cos \theta_{k}-\sin \theta_{k}, i \sin \theta_{k}+\cos \theta_{k}\right], \quad \theta_{k}=\frac{2 \pi k}{100}, \quad 0 \leq k \leq 99
$$

Your next step is to reshape each 200×200 image $B_{k}[i, j]$ into a vector of raw pixel intensities, \vec{x}_{k}, then to compute the dataset mean, $\vec{m}=\frac{1}{100} \sum_{k=0}^{99} \vec{x}_{k}$.
(a) What is the length of the vector \vec{m} ?

Solution:

$$
\operatorname{len}(\vec{m})=\operatorname{len}\left(\vec{x}_{k}\right)=200 \times 200=40,000
$$

(b) What is the numerical value of \vec{m} ? Provide enough information to specify the value of every element of the vector.

Solution:

$$
\begin{aligned}
M[i, j] & =\frac{1}{100} \sum_{k=0}^{99} B_{k}[i, j] \\
& =\frac{1}{100} \sum_{k=0}^{99} A\left[i \cos \frac{2 \pi k}{100}-j \sin \frac{2 \pi k}{100}, i \sin \frac{2 \pi k}{100}+j \cos \frac{2 \pi k}{100}\right] \\
& =\frac{1}{100}\left(200-i \cos \frac{2 \pi k}{100}+j \sin \frac{2 \pi k}{100}\right) \\
& =200
\end{aligned}
$$

Therefore

$$
\vec{m}=[200,200, \ldots, 200]^{T}
$$

2. (16 points) Suppose you have a 1000 -sample audio waveform, $x[n]$, such that $x[n] \neq 0$ for $0 \leq n \leq$ 999. You want to chop this waveform into 200 -sample frames, with 10% overlap between frames. How many nonzero samples are there in the last frame?

Solution: 10% overlap $=20$-sample overlap, so the frames start at samples $0,180,360,540$, 720, and 900. The last frame has 100 nonzero samples.
3. (21 points) You are given a $640 \mathrm{x} 480 \mathrm{~B} / \mathrm{W}$ input image, $x\left[n_{1}, n_{2}\right.$] for integer pixel values $0 \leq n_{1} \leq$ $639,0 \leq n_{2} \leq 479$. You wish to interpolate the given pixel values in order to find the value of the image at location (500.3,300.8). Specify the formula used to calculate $x[500.3,300.8]$ using each of the following algorithms. Be certain that your formula clearly states which pixels from the input image are used.
(a) Piece-wise constant interpolation.

Solution:

$$
x[500.3,300.8]=x[500,300]
$$

(b) Bilinear interpolation.

Solution:

$$
\begin{aligned}
x[500.3,300.8]= & (0.7)(0.2) x[500,300]+(0.7)(0.8) x[500,301]+ \\
& (0.3)(0.2) x[501,300]+(0.3)(0.8) x[501,301]
\end{aligned}
$$

(c) Sinc interpolation.

Solution:

$$
x[500.3,300.8]=\sum_{n_{1}=0}^{639} \sum_{n_{2}=0}^{479} x\left[n_{1}, n_{2}\right] \operatorname{sinc}\left(\pi\left(500.3-n_{1}\right)\right) \operatorname{sinc}\left(\pi\left(300.8-n_{2}\right)\right)
$$

4. (10 points) Suppose a particular image has the following pixel values:

$$
a[0,0]=1, \quad a[1,0]=0, \quad a[0,1]=0, \quad a[1,1]=0
$$

Use bilinear interpolation to estimate the value of the pixel $a\left(\frac{1}{3}, \frac{1}{3}\right)$.

Solution: $a\left(\frac{1}{3}, \frac{1}{3}\right)=\frac{4}{9}$
5. (20 points) Image warping has moved input pixel $i(4.6,8.2)$ to output pixel $i^{\prime}(15,7)$. Input pixel $i(4.6,8.2)$ is unknown, but you know that $i(4,8)=a, i(4,9)=b, i(5,8)=c$, and $i(5,9)=d$. Use bilinear interpolation to estimate $i(4.6,8.2)$ in terms of a, b, c, and d.

Solution:

$$
i(4.6,8.2)=(0.4)(0.8) a+(0.4)(0.2) b+(0.6)(0.8) c+(0.6)(0.2) d
$$

6. (17 points) Your goal is to find a positive real number, a, so that $a x[n]$ is as similar as possible to $y[n]$ in the sense that it minimizes the following error:

$$
\epsilon=\int_{-\pi}^{\pi}\left(\left|Y\left(e^{j \omega}\right)\right|-a\left|X\left(e^{j \omega}\right)\right|\right)^{2} d \omega
$$

Find the value of a that mininimizes ϵ, in terms of $\left|X\left(e^{j \omega}\right)\right|$ and $\left|Y\left(e^{j \omega}\right)\right|$.

Solution:

$$
\frac{\partial \epsilon}{\partial a}=2 \int_{-\pi}^{\pi}\left(a\left|X\left(e^{j \omega}\right)\right|-\left|Y\left(e^{j \omega}\right)\right|\right)\left|X\left(e^{j \omega}\right)\right| d \omega
$$

which equals 0 at:

$$
a=\frac{\int_{-\pi}^{\pi}\left|X\left(e^{j \omega}\right)\right|\left|Y\left(e^{j \omega}\right)\right| d \omega}{\int_{-\pi}^{\pi}\left|X\left(e^{j \omega}\right)\right|^{2} d \omega}
$$

7. (5 points) Consider the problem of upsampling, by a factor of 2 , the infinite-sized image

$$
x\left[n_{1}, n_{2}\right]=\delta\left[n_{1}-5\right]= \begin{cases}1 & n_{1}=5 \\ 0 & \text { otherwise }\end{cases}
$$

Suppose that the image is upsampled, then filtered, as

$$
y\left[n_{1}, n_{2}\right]=\left\{\begin{array}{ll}
x\left[n_{1} / 2, n_{2} / 2\right] & n_{1} / 2 \text { and } n_{2} / 2 \text { both integers } \\
0 & \text { otherwise }
\end{array} z\left[n_{1}, n_{2}\right]=y\left[n_{1}, n_{2}\right] * * h\left[n_{1}, n_{2}\right]\right.
$$

Let $h\left[n_{1}, n_{2}\right]$ be the ideal anti-aliasing filter with frequency response

$$
H\left(\omega_{1}, \omega_{2}\right)= \begin{cases}1 & \left|\omega_{1}\right|<\frac{\pi}{2}, \quad\left|\omega_{2}\right|<\frac{\pi}{2} \\ 0 & \text { otherwise }\end{cases}
$$

Find $z\left[n_{1}, n_{2}\right]$.

Solution:

$$
\begin{gathered}
h\left[n_{1}, n_{2}\right]=h_{1}\left[n_{1}\right] h_{2}\left[n_{2}\right]=\left(\frac{1}{2}\right) \operatorname{sinc}\left(\frac{\pi n_{1}}{2}\right)\left(\frac{1}{2}\right) \operatorname{sinc}\left(\frac{\pi n_{2}}{2}\right) \\
y\left[n_{1}, n_{2}\right]=\left\{\begin{array}{ll}
1 & n_{1}=10 \text { and } n_{2} \text { a multiple of } 2 \\
0 & \text { otherwise }
\end{array}= \begin{cases}\left(\sum_{p=-\infty}^{\infty} \delta\left[n_{2}-2 p\right]\right) & n_{1}=10 \\
0 & \text { otherwise }\end{cases} \right.
\end{gathered}
$$

Convolving along each row gives $h_{2}\left[n_{2}\right] * y\left[n_{1}, n_{2}\right]$, which is zero, except on the $n_{1}=10$ row. On that row, $y\left[n_{1}, n_{2}\right]$ is equal to one on the even-numbered samples, and equal to zero on the odd-numbered samples. The correct answer is the obvious one: the low-pass filter computes a perfect average between 0 and 1 , so each pixel winds up with a value of $1 / 2$. If you want to do a more careful analysis, you could notice that this row is an impulse train with a period of $P=2$, and therefore it has a DTFT which has impulses of area $2 \pi / P=\pi$ at $\omega=0$ and $\omega=\pi$. The LPF keeps only the $\omega=0$ impulse, thus:

$$
\begin{aligned}
h_{2}\left[n_{2}\right] * y\left[n_{1}, n_{2}\right] & = \begin{cases}\left(\sum_{p=-\infty}^{\infty} \delta\left[n_{2}-2 p\right]\right) *\left(\frac{1}{2} \operatorname{sinc}\left(\frac{\pi n_{2}}{2}\right)\right) & n_{1}=10 \\
0 & \text { otherwise }\end{cases} \\
& = \begin{cases}\mathcal{F}^{-1}\left\{\left(\frac{2 \pi}{2} \sum_{k=0}^{1} \delta\left(\omega-\frac{2 \pi k}{2}\right)\right)\left(\left\{\begin{array}{ll}
1 & \left|\omega_{2}\right|<\frac{\pi}{2} \\
0 & \text { otherwise }
\end{array}\right)\right\}\right. & n_{1}=10 \\
0 & \text { otherwise }\end{cases} \\
& = \begin{cases}\mathcal{F}^{-1}\{\pi \delta(\omega)\} & n_{1}=10 \\
0 & \text { otherwise }\end{cases} \\
& = \begin{cases}\frac{1}{2} & n_{1}=10 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Convolving along each column, then, gives

$$
z\left[n_{1}, n_{2}\right]=h_{1}\left[n_{1}\right] * h_{2}\left[n_{2}\right] * y\left[n_{1}, n_{2}\right]=\left(\frac{1}{4}\right) \operatorname{sinc}\left(\frac{\pi\left(n_{1}-10\right)}{2}\right)
$$

8. (10 points) Consider the signal $x[n]=\beta^{n} u[n]$, where $u[n]$ is the unit step function.
(a) Find the LPC coefficient, α, that minimizes ε, where

$$
\varepsilon=\sum_{n=-\infty}^{\infty} e^{2}[n], \quad e[n]=x[n]-\alpha x[n-1]
$$

Solution:

$$
\begin{align*}
\varepsilon & =\sum_{n=-\infty}^{\infty}(x[n]-\alpha x[n-1])^{2} \tag{1}\\
& =1+\sum_{n=1}^{\infty}\left(\beta^{n}-\alpha \beta^{n-1}\right)^{2} \tag{2}
\end{align*}
$$

Differentiating w.r.t. α gives

$$
\frac{\partial \varepsilon}{\partial \alpha}=-2 \sum_{n=1}^{\infty} \beta\left(\beta^{n}-\alpha \beta^{n-1}\right)
$$

which is zero iff $\alpha=\beta$.
(b) Find the signal $e[n]$ that results from your choice of α in part (a).

Solution:

$$
e[n]=\beta^{n} u[n]-\alpha \beta^{n-1} u[n-1]=\beta^{n}(u[n]-u[n-1])=\delta[n]
$$

9. (10 points) Consider the LPC synthesis filter $s[n]=e[n]+\alpha s[n-1]$.
(a) Under what condition on α is the synthesis filter stable?

Solution: The roots of the polynomial $1-\alpha z^{-1}$ must be inside the unit circle. That's a first-order polynomial, its only root is $z^{-1}=\alpha$, so we just need $|\alpha|<1$.
(b) Assume that the synthesis filter is stable. Suppose that $e[n]$ is the pulse train $e[n]=\sum_{p=-\infty}^{\infty} \delta[n-$ $p P]$. As a function of α, P, and ω, what is the DTFT $S\left(e^{j \omega}\right)$? You need not simplify, but your answer should contain no integrals or infinite sums.

Solution: The DTFT of the pulse train is a pulse train,

$$
E\left(e^{j \omega}\right)=\left(\frac{2 \pi}{P}\right) \sum_{k=0}^{P-1} \delta\left(\omega-\frac{2 \pi k}{P}\right)
$$

The DTFT of the synthesized signal is

$$
S\left(e^{j \omega}\right)=H\left(e^{j \omega}\right) E\left(e^{j \omega}\right)=\frac{E\left(e^{j \omega}\right)}{1-\alpha e^{-j \omega}}
$$

So

$$
S\left(e^{j \omega}\right)=\frac{1}{1-\alpha e^{-j \omega}}\left(\frac{2 \pi}{P}\right) \sum_{k=0}^{P-1} \delta\left(\omega-\frac{2 \pi k}{P}\right)
$$

10. (5 points) Consider the synthesis filter $s[n]=e[n]+b s[n-1]-\left(\frac{b}{2}\right)^{2} s[n-2]$. For what values of b is the synthesis filter stable?

Solution: Take the Z transform of the difference equation and re-arrange terms, we get

$$
S(z)\left(1-b z^{-1}+\left(\frac{b}{2}\right)^{2} z^{-2}\right)=E(z)
$$

is stable if the roots of the polynomial have absolute value less than 1 . The roots of the polynomial are

$$
r_{k}=\frac{b}{2} \pm \frac{\sqrt{b^{2}-4(b / 2)^{2}}}{2}=\frac{b}{2}
$$

So $\left|r_{k}\right|<1$ iff $|b|<2$.
11. (5 points) Suppose you have a 200×200-pixel image that is just one white dot at pixel $(45,25)$, and all the other pixels are black:

$$
x\left[n_{1}, n_{2}\right]= \begin{cases}255 & n_{1}=45, n_{2}=25 \\ 0 & \text { otherwise }, 0 \leq n_{1}<199,0 \leq n_{2}<199\end{cases}
$$

This image is upsampled to size 400×400, then filtered, as

$$
y\left[n_{1}, n_{2}\right]=\left\{\begin{array}{ll}
x\left[n_{1} / 2, n_{2} / 2\right] & n_{1} / 2 \text { and } n_{2} / 2 \text { both integers } \\
0 & \text { otherwise }
\end{array} \quad z\left[n_{1}, n_{2}\right]=y\left[n_{1}, n_{2}\right] * * h\left[n_{1}, n_{2}\right]\right.
$$

where $h\left[n_{1}, n_{2}\right]$ is the ideal anti-aliasing filter whose frequency response is

$$
H\left(\omega_{1}, \omega_{2}\right)= \begin{cases}1 & \left|\omega_{1}\right|<\frac{\pi}{2},\left|\omega_{2}\right|<\frac{\pi}{2} \\ 0 & \text { otherwise }\end{cases}
$$

Find $z\left[n_{1}, n_{2}\right]$.

Solution:

$$
\begin{gathered}
y\left[n_{1}, n_{2}\right]= \begin{cases}255 & n_{1}=90, n_{2}=50 \\
0 & \text { otherwise }\end{cases} \\
h\left[n_{1}, n_{2}\right]=\frac{1}{2} \operatorname{sinc}\left(\frac{\pi n_{1}}{2}\right) \frac{1}{2} \operatorname{sinc}\left(\frac{\pi n_{2}}{2}\right)=h_{1}\left[n_{1}\right] h_{2}\left[n_{2}\right]
\end{gathered}
$$

Row convolution gives $v\left[n_{1}, n_{2}\right]=h_{2}\left[n_{2}\right] * y\left[n_{1}, n_{2}\right]$, which is

$$
v\left[n_{1}, n_{2}\right]= \begin{cases}\frac{255}{2} \operatorname{sinc}\left(\frac{\pi\left(n_{2}-50\right)}{2}\right) & n_{1}=90 \\ 0 & \text { otherwise }\end{cases}
$$

Column convolution then gives

$$
z\left[n_{1}, n_{2}\right]=\frac{255}{4} \operatorname{sinc}\left(\frac{\pi\left(n_{1}-90\right)}{2}\right) \operatorname{sinc}\left(\frac{\pi\left(n_{2}-50\right)}{2}\right)
$$

12. (10 points) Consider an infinite-sized grayscale image of a diagonal gray line:

$$
x\left[n_{1}, n_{2}\right]=\left\{\begin{array}{ll}
105 & n_{1}-n_{2}=5 \\
0 & \text { otherwise }
\end{array}, \quad-\infty<n_{1}<\infty, \quad-\infty<n_{2}<\infty\right.
$$

(a) Suppose we convolve each row with a differencing filter:

$$
y\left[n_{1}, n_{2}\right]=x\left[n_{1}, n_{2}\right] * d_{2}\left[n_{2}\right], \quad d_{2}\left[n_{2}\right]= \begin{cases}1 & n_{2}=0 \\ -1 & n_{2}=2 \\ 0 & \text { otherwise }\end{cases}
$$

Find $y\left[n_{1}, n_{2}\right]$.
Solution:

$$
\begin{aligned}
y\left[n_{1}, n_{2}\right] & =\sum_{m_{2}} x\left[n_{1}, n_{2}-m_{2}\right] d_{2}\left[m_{2}\right] \\
& =x\left[n_{1}, n_{2}\right]-x\left[n_{1}, n_{2}-2\right] \\
& = \begin{cases}105 & n_{2}=n_{1}-5 \\
-105 & n_{2}=n_{1}-3 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

(b) Suppose, INSTEAD, that we convolve each row with an averaging filter

$$
z\left[n_{1}, n_{2}\right]=x\left[n_{1}, n_{2}\right] * a_{2}\left[n_{2}\right], \quad a_{2}\left[n_{2}\right]= \begin{cases}1 & n_{2} \in\{0,2\} \\ 2 & n_{2}=1 \\ 0 & \text { otherwise }\end{cases}
$$

Find $z\left[n_{1}, n_{2}\right]$.

Solution:

$$
\begin{aligned}
y\left[n_{1}, n_{2}\right] & =\sum_{m_{2}} x\left[n_{1}, n_{2}-m_{2}\right] a_{2}\left[m_{2}\right] \\
& =x\left[n_{1}, n_{2}\right]+2 x\left[n_{1}, n_{2}-1\right]+x\left[n_{1}, n_{2}-2\right] \\
& = \begin{cases}105 & n_{2}=n_{1}-5 \text { or } n_{1}-3 \\
210 & n_{2}=n_{1}-4 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

13. (15 points) A particular two-pole filter has the impulse response

$$
h[n]=e^{-\sigma_{1} n} \sin \left(\omega_{1} n\right) u[n]
$$

$H(z)$ can be written as

$$
H(z)=\frac{G z^{-1}}{A(z)}, \quad A(z)=1-a_{1} z^{-1}-a_{2} z^{-2}
$$

Find a_{1}, a_{2}, and G in terms of σ_{1} and ω_{1}.

Solution:

$$
\begin{aligned}
G & =e^{-\sigma_{1}} \sin \left(\omega_{1}\right) \\
a_{1} & =2 e^{-\sigma_{1}} \cos \left(\omega_{1}\right) \\
a_{2} & =-e^{-2 \sigma_{1}}
\end{aligned}
$$

14. (5 points) Suppose that \mathcal{X} is the unit disk, i.e.,

$$
\mathcal{X}=\left\{\vec{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]: x_{1}^{2}+x_{2}^{2} \leq 1\right\}
$$

Suppose that \mathcal{Y} is defined as:

$$
\mathcal{X}=\left\{\vec{y}=\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]: \vec{y}=A \vec{x} \leq 1\right\}
$$

where A is defined to be the following matrix:

$$
A=\left[\begin{array}{cc}
2 & -1 \\
1 & 1
\end{array}\right]
$$

Notice that the area of \mathcal{X}, in the two-dimensional plane, is $|\mathcal{X}|=\pi$. What is the numerical value of $|\mathcal{Y}|$, the area of \mathcal{Y} ?

Solution:

$$
|\mathcal{Y}|=|A| \pi=3 \pi
$$

15. (5 points) Suppose that you are trying to allocate money to a set of N different possible investments. Suppose that if you allocate a_{k} dollars to investment k, it will return $a_{k} b_{k}$ dollars in profit. However, in order to invest, you first need to borrow the money, and the cost of borrowing is quadratic in terms of the allocations. Let \vec{a} be your vector of allocations, let \vec{b} be the vector of profit factors, and let C be the matrix of cost factors; suppose that your total profit is

$$
P=\vec{b}^{T} \vec{a}-\vec{a}^{T} C \vec{a}
$$

In terms of \vec{b} and C, find the vector \vec{a} that will maximize your profit. You may assume that C is nonsingular.

Solution:

$$
\nabla_{\vec{a}} P=\vec{b}-2 C \vec{a}
$$

Setting $\nabla_{\vec{a}} P=0$ gives

$$
\vec{a}=\frac{1}{2} C^{-1} \vec{b}
$$

16. (10 points) Suppose that you are watching a movie in which the camera is rotating around the top left corner of the frame at a rate of about 0.03 radians/frame, so that, as a function of the row index r and column index c, the optical flow field is

$$
\vec{v}=\left[\begin{array}{l}
v_{r} \\
v_{c}
\end{array}\right]=\left[\begin{array}{c}
0.03 c \\
-0.03 r
\end{array}\right]
$$

Suppose that the image $f[r, c]$ is a color gradient, with bright colors at the top of the image, and darker colors at the bottom:

$$
f[r, c]=255-0.1 r
$$

What is $\frac{\partial f}{\partial t}$, the change in pixel intensity, as a function of r and c ?

Solution: The gradient of the image is

$$
\nabla f=\left[\begin{array}{c}
\frac{\partial f}{\partial r} \\
\frac{\partial f}{\partial c}
\end{array}\right]=\left[\begin{array}{c}
-0.1 \\
0
\end{array}\right]
$$

Plugging this into the optical flow equation, we get

$$
\begin{aligned}
\frac{\partial f}{\partial t} & =-(\nabla f)^{T} \vec{v} \\
& =-[-0.1,0]\left[\begin{array}{c}
0.03 c \\
-0.03 r
\end{array}\right] \\
& =0.003 c
\end{aligned}
$$

