Deep Voxel Flow 0000000

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Conclusion

Lecture 21: Barycentric Coordinates and Deep Voxel Flow

Mark Hasegawa-Johnson All content CC-SA 4.0 unless otherwise specified.

University of Illinois

ECE 417: Multimedia Signal Processing, Fall 2020

How to Make a Talking Head	Barycentric Coordinates	Deep Voxel Flow	Conclusion

3 Deep Voxel Flow

How to	o Make	а	Talking	Head

Deep Voxel Flow

Conclusion 000

1 How to Make a Talking Head

2 Barycentric Coordinates

3 Deep Voxel Flow

How to Make a Talking Head	Barycentric Coordinates	Deep Voxel Flow	Conclusion
•00	0000000000	0000000	000

Goal of MP4: Generate video frames (right) by warping a static image (left).

(日) (個) (目) (目) (目) (目)

How to Make a Talking Head $0 \bullet 0$

Barycentric Coordinates

Deep Voxel Flow 0000000 Conclusion 000

Talking head, full outline

How to Make a Talking Head	Barycentric Coordinates	Deep Voxel Flow	Conclusion
○○●		0000000	000
How it is done			

lip_height,width = NeuralNet (audio features)

out_triangs = LinearlyInterpolate(inp_triangs,lip_height,width)
inp_coord = BaryCentric(out_coord,inp_triangs,out_triangs)
out_image = BilinearInterpolate(inp_coord,inp_image)

Barycentric Coordinates

Deep Voxel Flow 0000000 Conclusion 000

2 Barycentric Coordinates

3 Deep Voxel Flow

- ▲ ロ ▶ → 個 ▶ → 目 ▶ → 目 → のへで

Barycentric Coordinates •000000000 Deep Voxel Flow

Conclusion

Affine Transformations

Affine Transformations

Combines linear transformations,
 and Translations

How to Make a Talking Head	Barycentric Coordinates	Deep Voxel Flow	Conclusion
000	o●ooooooooo	0000000	000
Piece-wise affine tra	nsform		

- OK, so somebody's given us a lot of points, arranged like this in little triangles.
- We know that we want a DIFFERENT AFFINE TRANSFORM for EACH TRIANGLE. For the k^{th} triangle, we want to have

$$A_k = \left[\begin{array}{rrr} a_k & b_k & c_k \\ d_k & e_k & f_k \\ 0 & 0 & 1 \end{array} \right]$$

A D > A P > A B > A B >

How to Make a Talking Head 000	Barycentric Coordinates	Deep Voxel Flow	Conclusion 000
Piece-wise affine	transform		

output point:
$$\vec{x} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
, input point: $\vec{u} = \begin{bmatrix} u \\ v \\ 1 \end{bmatrix}$

Definition: if \vec{x} is in the k^{th} triangle in the **output image**, then we want to use the k^{th} affine transform:

$$\vec{x} = A_k \vec{u}, \quad \vec{u} = A_k^{-1} \vec{x}$$

How to Make a Talking Head	Barycentric Coordinates	Deep Voxel Flow	Conclusion
	000000000		

If it is known that $\vec{u} = A_k^{-1} \vec{x}$ for some unknown affine transform matrix A_k ,

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

then

the method of barycentric coordinates finds \vec{u} without ever finding A_k .

Barycentric Coordinates

Deep Voxel Flow 0000000 Conclusion 000

Barycentric Coordinates

Barycentric coordinates turns the problem on its head. Suppose \vec{x} is in a triangle with corners at $\vec{x_1}$, $\vec{x_2}$, and $\vec{x_3}$. That means that

$$\vec{x} = \lambda_1 \vec{x_1} + \lambda_2 \vec{x_2} + \lambda_3 \vec{x_3}$$

where

$$0 \leq \lambda_1, \lambda_2, \lambda_3 \leq 1$$

and

$$\lambda_1 + \lambda_2 + \lambda_3 = 1$$

Barycentric Coordinates

Deep Voxel Flow 0000000 Conclusion

Barycentric Coordinates

Suppose that all three of the corners are transformed by some affine transform A, thus

$$\vec{u}_1 = A\vec{x}_1, \ \vec{u}_2 = A\vec{x}_2, \ \vec{u}_3 = A\vec{x}_3$$

Then if

If:
$$\vec{x} = \lambda_1 \vec{x}_1 + \lambda_2 \vec{x}_2 + \lambda_3 \vec{x}_3$$

Then:

$$\vec{u} = A\vec{x}$$

= $\lambda_1 A\vec{x}_1 + \lambda_2 A\vec{x}_2 + \lambda_3 A\vec{x}_3$
= $\lambda_1 \vec{u}_1 + \lambda_2 \vec{u}_2 + \lambda_3 \vec{u}_3$

In other words, once we know the λ 's, we no longer need to find A. We only need to know where the corners of the triangle have moved.

How to Make a Talking Head	Barycentric Coordinates	Deep Voxel Flow	Conclusion 000

lf

$$\vec{x} = \lambda_1 \vec{x_1} + \lambda_2 \vec{x_2} + \lambda_3 \vec{x_3}$$

Then

 $\vec{u} = \lambda_1 \vec{u}_1 + \lambda_2 \vec{u}_2 + \lambda_3 \vec{u}_3$

How to Make a Talking Head	Barycentric Coordinates	Deep Voxel Flow	Conclusion
	00000000000		

How to find Barycentric Coordinates

But how do you find λ_1 , λ_2 , and λ_3 ?

$$\begin{bmatrix} x\\ y\\ 1 \end{bmatrix} = \lambda_1 \vec{x_1} + \lambda_2 \vec{x_2} + \lambda_3 \vec{x_3} = \begin{bmatrix} x_1 & x_2 & x_3\\ y_1 & y_2 & y_3\\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} \lambda_1\\ \lambda_2\\ \lambda_3 \end{bmatrix}$$

Write this as:

$$\vec{x} = X\vec{\lambda}$$

Therefore

$$\vec{\lambda} = X^{-1}\vec{x}$$

This **always works:** the matrix X is always invertible, unless all three of the points $\vec{x_1}$, $\vec{x_2}$, and $\vec{x_3}$ are on a straight line.

How to Make a Talking Head	Barycentric Coordinates	Deep Voxel Flow	Conclusion
000		0000000	000
How do you find ou	t which triangle th	e point is in?	

• Suppose we have K different triangles, each of which is characterized by a 3×3 matrix of its corners

$$X_k = [\vec{x}_{1,k}, \vec{x}_{2,k}, \vec{x}_{3,k}]$$

where $\vec{x}_{m,k}$ is the m^{th} corner of the k^{th} triangle.

• Notice that, for any point \vec{x} , for ANY triangle X_k , we can find

$$\lambda = X_k^{-1} \vec{x}$$

However, the coefficients λ₁, λ₂, and λ₃ will all be between 0 and 1 if and only if the point x is inside the triangle X_k. Otherwise, some of the λ's must be negative.

How to Make a Talking Head	Barycentric Coordinates	Deep Voxel Flow	Conclusion
	0000000000		

The Method of Barycentric Coordinates

To construct the animated output image frame J[y, x], we do the following things:

- First, for each of the reference triangles U_k in the input image I(u, v), decide where that triangle should move to. Call the new triangle location X_k.
- Second, for each output pixel (x, y):
 - For each of the triangles, find $\vec{\lambda} = X_k^{-1} \vec{x}$.
 - Choose the triangle for which all of the λ coefficients are $0 \leq \lambda \leq 1.$

(日) (同) (三) (三) (三) (○) (○)

- Find $\vec{u} = U_k \vec{\lambda}$.
- Estimate I(u, v) using bilinear interpolation.
- Set J[y, x] = I(v, u).

Barycentric Coordinates

Deep Voxel Flow 0000000

Conclusion 000

How to Make a Talking Head

lip_height,width = NeuralNet (audio features)

out_triangs = LinearlyInterpolate (inp_triangs,lip_height,width)
inp_coord = BaryCentric (out_coord,inp_triangs,out_triangs)
out_image = BilinearInterpolate (inp_coord,inp_image)

Barycentric Coordinates

Deep Voxel Flow

Conclusion 000

1 How to Make a Talking Head

2 Barycentric Coordinates

3 Deep Voxel Flow

Barycentric Coordinates

Deep Voxel Flow ●000000 Conclusion 000

Video Frame Synthesis Using Deep Voxel Flow Liu et al., ICCV 2017

Frame 1 Interpolated Frames (Ours)

Frame 2

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Image (c) ICCV and the authors

 How to Make a Talking Head
 Barycentric Coordinates
 Deep Voxel Flow
 Conclusion

 OOO
 OOO
 OOO
 OOO
 OOO

 Video Frame Synthesis Using Deep Voxel Flow
 Liu et al., ICCV 2017

- Objective: Given video frames at times 0 and 1, generate missing frame at time t ∈ (0, 1).
- Voxel Flow: Generated frame is made by copying pixels from frames 0 and 1, with some shift in position, (Δx, Δy).
- The coordinate shift (Δx, Δy) is (almost) a piece-wise affine function of (x, y), so it is (almost) equivalent to a mapping based on Barycentric coordinates—but without ever explicitly choosing the triangle locations.
- When $(x \Delta x, y \Delta y)$ are non-integer, the input pixels are constructed using **bilinear interpolation**.

How to Make a Talking Head 000	Barycentric Coordinates	Deep Voxel Flow	Conclusion 000

Voxel Fl<u>ow</u>

The generated frame, $\hat{\mathbf{Y}}(y, x, t)$, is generated as a linear convex interpolation between selected pixels of the two reference images, $\mathbf{X}(y, x, 0)$ and $\mathbf{X}(y, x, 1)$:

 $\mathbf{\hat{Y}}(y, x, t) = (1 - \Delta t) \mathbf{X} (y - \Delta y, x - \Delta x, 0) + \Delta t \mathbf{X} (y + \Delta y, x + \Delta x, 1)$ where $\Delta t \in (0, 1)$.

How to Make a Talking Head	Barycentric Coordinates	Deep Voxel Flow	Conclusion 000
Piece-Wise (Nearly)	Affine		

The voxel flow field is generated as

$$\mathbf{F} = (\Delta x, \Delta y, \Delta t) = \mathcal{H}(\mathbf{X}; \theta)$$

where $\mathcal{H}(\mathbf{X}; \theta)$ uses:

- A series of CNN layers with ReLU nonlinearity, to compute a piece-wise affine function of **X**, then
- A final layer with a tanh nonlinearity, squashing the output to the range Δx ∈ (−1, 1), Δy ∈ (−1, 1).

How to Make a Talking Head Barycentric Coordinates Deep Voxel Flow Conclusion

Piece-Wise (Nearly) Affine

Image (c) ICCV and the authors

low	Make	Talking	Head

Deep Voxel Flow 00000●0

Bilinear Interpolation

The reference pixels, $(y - \Delta y, x - \Delta x)$ and $(y + \Delta y, x + \Delta x)$, are usually not integers, so they are constructed using bilinear interpolation:

$$\mathbf{\hat{Y}}(y,x,t) = \sum_{i,j,k\in\{0,1\}} \mathbf{W}^{ijk} \mathbf{X}(\mathbf{V}^{ijk}),$$

where:

$$\begin{split} \mathbf{V}^{000} &= (\lfloor x - \Delta x \rfloor, \lfloor y - \Delta y \rfloor, 0) \\ \mathbf{V}^{100} &= (\lceil x - \Delta x \rceil, \lfloor y - \Delta y \rfloor, 0) \\ &\vdots \\ \mathbf{V}^{111} &= (\lceil x + \Delta x \rceil, \lceil y + \Delta y \rceil, 1) \end{split}$$

and the weights \mathbf{W}^{ijk} are constructed according to bilinear interpolation.

How to Make a Talking Head	Barycentric Coordinates	Deep Voxel Flow	Conclusion
000		000000●	000
Differentiable			

Because bilinear interpolation is a piece-wise linear function of Δx and Δy , the error can be differentiated w.r.t. those parameters. From the original paper:

$$\begin{split} \frac{\partial \mathbf{\hat{Y}}(x,y)}{\partial (\Delta x)} &= \sum_{i,j,k \in [0,1]} \mathbf{E}^{ijk} \mathbf{X}(\mathbf{V}^{ijk}) ,\\ \mathbf{E}^{000} &= (1 - (\mathbf{L}_y^0 - \lfloor \mathbf{L}_y^0 \rfloor))(1 - \Delta t) \\ \mathbf{E}^{100} &= - (1 - (\mathbf{L}_y^0 - \lfloor \mathbf{L}_y^0 \rfloor))(1 - \Delta t) \\ &\vdots \\ \mathbf{E}^{011} &= - (\mathbf{L}_y^1 - \lfloor \mathbf{L}_y^1 \rfloor) \Delta t \\ \mathbf{E}^{111} &= (\mathbf{L}_y^1 - \lfloor \mathbf{L}_y^1 \rfloor) \Delta t , \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

How	Make	Talking	Head	

Deep Voxel Flow 0000000 Conclusion

Outline

How to Make a Talking Head

2 Barycentric Coordinates

3 Deep Voxel Flow

Barycentric Coordinates

Deep Voxel Flow 0000000

Conclusion •00

How to Make a Talking Head

lip_height,width = NeuralNet (audio features)

out_triangs = LinearlyInterpolate(inp_triangs,lip_height,width)
inp_coord = BaryCentric(out_coord,inp_triangs,out_triangs)
out_image = BilinearInterpolate(inp_coord,inp_image)

How to Make a Talking Head	Barycentric Coordinates	Deep Voxel Flow	Conclusion		
000		0000000	000		
Barycentric Coordinates					

- For each of the triangles, find $\vec{\lambda} = X_k^{-1} \vec{x}$.
- Choose the triangle for which all of the λ coefficients are $0 \leq \lambda \leq 1.$
- Find $\vec{u} = U_k \vec{\lambda}$.
- Estimate I(v, u) using bilinear interpolation.

$$I(v, u) = \sum_{m} \sum_{n} I[n, m]h(v - n, u - m)$$

• Set J[y, x] = I(v, u).

Barycentric Coordinates

Deep Voxel Flow 0000000

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Conclusion

Deep Voxel Flow: PWL⇒End-to-end differentiable

Image (c) ICCV and the authors