Lecture 21: Barycentric Coordinates and Deep Voxel Flow

Mark Hasegawa-Johnson
All content CC-SA 4.0 unless otherwise specified.

University of Illinois

ECE 417: Multimedia Signal Processing, Fall 2020
1. How to Make a Talking Head
2. Barycentric Coordinates
3. Deep Voxel Flow
4. Conclusion
Outline

1. How to Make a Talking Head
2. Barycentric Coordinates
3. Deep Voxel Flow
4. Conclusion
Goal of MP4: Generate video frames (right) by warping a static image (left).
Talking head, full outline

speech

Audio to visual mapping

Face animation

warping
How it is done

\[
\text{lip_height,width} = \text{NeuralNet (audio features)} \\
\text{out_triangs} = \text{LinearlyInterpolate (inp_triangs, lip_height, width)} \\
\text{inp_coord} = \text{BaryCentric (out_coord, inp_triangs, out_triangs)} \\
\text{out_image} = \text{BilinearInterpolate (inp_coord, inp_image)}
\]
Outline

1. How to Make a Talking Head
2. Barycentric Coordinates
3. Deep Voxel Flow
4. Conclusion
Affine Transformations

* Combines linear transformations, and Translations

\[
\begin{bmatrix}
 x' \\
 y' \\
 w'
\end{bmatrix} =
\begin{bmatrix}
 a & b & c \\
 d & e & f \\
 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 w
\end{bmatrix}
\]

the ones we looked at, that were the you know the rotation scaling and
OK, so somebody’s given us a lot of points, arranged like this in little triangles.

We know that we want a DIFFERENT AFFINE TRANSFORM for EACH TRIANGLE. For the k^{th} triangle, we want to have

$$A_k = \begin{bmatrix} a_k & b_k & c_k \\ d_k & e_k & f_k \\ 0 & 0 & 1 \end{bmatrix}$$
Piece-wise affine transform

output point: \(\vec{x} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \), input point: \(\vec{u} = \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} \)

Definition: if \(\vec{x} \) is in the \(k^{th} \) triangle in the output image, then we want to use the \(k^{th} \) affine transform:

\[
\vec{x} = A_k \vec{u}, \quad \vec{u} = A_k^{-1} \vec{x}
\]
If it is known that $\vec{u} = A_k^{-1} \vec{x}$ for some unknown affine transform matrix A_k, then the method of barycentric coordinates finds \vec{u} without ever finding A_k.
Barycentric Coordinates

Barycentric coordinates turns the problem on its head. Suppose \vec{x} is in a triangle with corners at \vec{x}_1, \vec{x}_2, and \vec{x}_3. That means that

$$\vec{x} = \lambda_1 \vec{x}_1 + \lambda_2 \vec{x}_2 + \lambda_3 \vec{x}_3$$

where

$$0 \leq \lambda_1, \lambda_2, \lambda_3 \leq 1$$

and

$$\lambda_1 + \lambda_2 + \lambda_3 = 1$$
Barycentric Coordinates

Suppose that all three of the corners are transformed by some affine transform \(A \), thus

\[
\vec{u}_1 = A\vec{x}_1, \quad \vec{u}_2 = A\vec{x}_2, \quad \vec{u}_3 = A\vec{x}_3
\]

Then if

\[
\vec{x} = \lambda_1 \vec{x}_1 + \lambda_2 \vec{x}_2 + \lambda_3 \vec{x}_3
\]

Then:

\[
\vec{u} = A\vec{x} = \lambda_1 A\vec{x}_1 + \lambda_2 A\vec{x}_2 + \lambda_3 A\vec{x}_3
\]

\[
= \lambda_1 \vec{u}_1 + \lambda_2 \vec{u}_2 + \lambda_3 \vec{u}_3
\]

In other words, once we know the \(\lambda \)’s, we no longer need to find \(A \). We only need to know where the corners of the triangle have moved.
Barycentric Coordinates

If

$$\vec{x} = \lambda_1 \vec{x}_1 + \lambda_2 \vec{x}_2 + \lambda_3 \vec{x}_3$$

Then

$$\vec{u} = \lambda_1 \vec{u}_1 + \lambda_2 \vec{u}_2 + \lambda_3 \vec{u}_3$$
How to find Barycentric Coordinates

But how do you find λ_1, λ_2, and λ_3?

$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \lambda_1 \vec{x}_1 + \lambda_2 \vec{x}_2 + \lambda_3 \vec{x}_3 = \begin{bmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{bmatrix}$$

Write this as:

$$\vec{x} = X \vec{\lambda}$$

Therefore

$$\vec{\lambda} = X^{-1} \vec{x}$$

This **always works**: the matrix X is always invertible, unless all three of the points \vec{x}_1, \vec{x}_2, and \vec{x}_3 are on a straight line.
How do you find out which triangle the point is in?

- Suppose we have K different triangles, each of which is characterized by a 3×3 matrix of its corners

$$X_k = [\vec{x}_{1,k}, \vec{x}_{2,k}, \vec{x}_{3,k}]$$

where $\vec{x}_{m,k}$ is the m^{th} corner of the k^{th} triangle.

- Notice that, for any point \vec{x}, for ANY triangle X_k, we can find

$$\lambda = X_k^{-1}\vec{x}$$

- However, the coefficients λ_1, λ_2, and λ_3 will all be between 0 and 1 if and only if the point \vec{x} is inside the triangle X_k. Otherwise, some of the λ's must be negative.
The Method of Barycentric Coordinates

To construct the animated output image frame \(J[y, x] \), we do the following things:

- First, for each of the reference triangles \(U_k \) in the input image \(I(u, v) \), decide where that triangle should move to. Call the new triangle location \(X_k \).
- Second, for each output pixel \((x, y)\):
 - For each of the triangles, find \(\vec{\lambda} = X_k^{-1} \vec{x} \).
 - Choose the triangle for which all of the \(\lambda \) coefficients are \(0 \leq \lambda \leq 1 \).
 - Find \(\vec{u} = U_k \vec{\lambda} \).
 - Estimate \(I(u, v) \) using bilinear interpolation.
 - Set \(J[y, x] = I(v, u) \).
lip_height, width = NeuralNet (audio features)
out_triangs = LinearlyInterpolate (inp_triangs, lip_height, width)
inp_coord = BaryCentric (out_coord, inp_triangs, out_triangs)
out_image = BilinearInterpolate (inp_coord, inp_image)
Video Frame Synthesis Using Deep Voxel Flow

Liu et al., ICCV 2017
Objective: Given video frames at times 0 and 1, generate missing frame at time $t \in (0, 1)$.

Voxel Flow: Generated frame is made by copying pixels from frames 0 and 1, with some shift in position, $(\Delta x, \Delta y)$.

The coordinate shift $(\Delta x, \Delta y)$ is (almost) a piece-wise affine function of (x, y), so it is (almost) equivalent to a mapping based on Barycentric coordinates—but without ever explicitly choosing the triangle locations.

When $(x - \Delta x, y - \Delta y)$ are non-integer, the input pixels are constructed using bilinear interpolation.
Voxel Flow

The generated frame, $\hat{Y}(y, x, t)$, is generated as a linear convex interpolation between selected pixels of the two reference images, $X(y, x, 0)$ and $X(y, x, 1)$:

$$\hat{Y}(y, x, t) = (1 - \Delta t) X(y - \Delta y, x - \Delta x, 0) + \Delta t X(y + \Delta y, x + \Delta x, 1)$$

where $\Delta t \in (0, 1)$.
The voxel flow field is generated as

$$ F = (\Delta x, \Delta y, \Delta t) = \mathcal{H}(\mathbf{X}; \theta) $$

where $\mathcal{H}(\mathbf{X}; \theta)$ uses:

- A series of CNN layers with ReLU nonlinearity, to compute a piece-wise affine function of \mathbf{X}, then
- A final layer with a tanh nonlinearity, squashing the output to the range $\Delta x \in (-1, 1)$, $\Delta y \in (-1, 1)$.
How to Make a Talking Head

Barycentric Coordinates

Deep Voxel Flow

Conclusion

Piece-Wise (Nearly) Affine

Image (c) ICCV and the authors
Bilinear Interpolation

The reference pixels, \((y - \Delta y, x - \Delta x)\) and \((y + \Delta y, x + \Delta x)\), are usually not integers, so they are constructed using bilinear interpolation:

\[
\hat{Y}(y, x, t) = \sum_{i,j,k\in\{0,1\}} W_{ijk} \mathbf{X}(\mathbf{V}_{ijk}),
\]

where:

\[
\mathbf{V}^{000} = ([x - \Delta x], [y - \Delta y], 0)
\]

\[
\mathbf{V}^{100} = ([x - \Delta x], [y - \Delta y], 0)
\]

\vdots

\[
\mathbf{V}^{111} = ([x + \Delta x], [y + \Delta y], 1)
\]

and the weights \(W_{ijk}\) are constructed according to bilinear interpolation.
Because bilinear interpolation is a piece-wise linear function of Δx and Δy, the error can be differentiated w.r.t. those parameters. From the original paper:

$$\frac{\partial \hat{Y}(x, y)}{\partial (\Delta x)} = \sum_{i,j,k \in [0,1]} E^{ijk} X(V^{ijk}) ,$$

$$E^{000} = (1 - (L_y^0 - \lfloor L_y^0 \rfloor))(1 - \Delta t)$$
$$E^{100} = - (1 - (L_y^0 - \lfloor L_y^0 \rfloor))(1 - \Delta t)$$
$$\vdots$$
$$E^{011} = - (L_y^1 - \lfloor L_y^1 \rfloor) \Delta t$$
$$E^{111} = (L_y^1 - \lfloor L_y^1 \rfloor) \Delta t,$$
lip_height, width = NeuralNet (audio features)
out_triangs = LinearlyInterpolate (inp_triangs, lip_height, width)
inp_coord = BaryCentric (out_coord, inp_triangs, out_triangs)
out_image = BilinearInterpolate (inp_coord, inp_image)
Barycentric Coordinates

For each of the triangles, find $\vec{\lambda} = X_k^{-1} \vec{x}$.

Choose the triangle for which all of the λ coefficients are $0 \leq \lambda \leq 1$.

Find $\vec{u} = U_k \vec{\lambda}$.

Estimate $I(v, u)$ using bilinear interpolation.

$$I(v, u) = \sum_{m} \sum_{n} I[n, m] h(v - n, u - m)$$

Set $J[y, x] = I(v, u)$.
Deep Voxel Flow: PWL \Rightarrow End-to-end differentiable

Input Video X

Convolutional Encoder-Decoder $\mathcal{H}(X; \Theta)$

Voxel Flow F

Synthesized Frame \hat{Y}

$T_{x,y,t}(X, F)$

Convolution \square

Max Pooling \square

Deconvolution \square

Volume Sampling \square

Skip Connection \square

Image (c) ICCV and the authors