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Hidden Markov Model
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1 Start in state qt = i with pmf πi .

2 Generate an observation, ~x , with pdf bi (~x).

3 Transition to a new state, qt+1 = j , according to pmf aij .

4 Repeat.
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The Forward Algorithm

Definition: αt(i) ≡ p(~x1, . . . , ~xt , qt = i |Λ). Computation:

1 Initialize:
α1(i) = πibi (~x1), 1 ≤ i ≤ N

2 Iterate:

αt(j) =
N∑
i=1

αt−1(i)aijbj(~xt), 1 ≤ j ≤ N, 2 ≤ t ≤ T

3 Terminate:

p(X |Λ) =
N∑
i=1

αT (i)
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The Backward Algorithm

Definition: βt(i) ≡ p(~xt+1, . . . , ~xT |qt = i ,Λ). Computation:

1 Initialize:
βT (i) = 1, 1 ≤ i ≤ N

2 Iterate:

βt(i) =
N∑
j=1

aijbj(~xt+1)βt+1(j), 1 ≤ i ≤ N, 1 ≤ t ≤ T − 1

3 Terminate:

p(X |Λ) =
N∑
i=1

πibi (~x1)β1(i)
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The Baum-Welch Algorithm

1 Initial State Probabilities:

π′i =

∑
sequences γ1(i)

# sequences

2 Transition Probabilities:

a′ij =

∑T−1
t=1 ξt(i , j)∑N

j=1

∑T−1
t=1 ξt(i , j)

3 Observation Probabilities:

L = − 1

T

T∑
t=1

N∑
i=1

γt(i) ln bi (~xt)
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Review: Conditional Probability

The relationship among posterior, prior, evidence and likelihood is

p(q|~x)p(~x) = p(~x |q)p(q)

Since softmax is normalized so that 1 =
∑

q softmax(e[q]), it
makes most sense to interpret softmax(e[q]) = p(q|~x). Therefore,
the likelihood should be

bq(~x) ≡ p(~x |q) =
p(~x) softmax(e[q])

p(q)
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Relationship between the likelihood and the posterior

Therefore, the likelihood should be

bq(~x) ≡ p(~x |q) =
p(~x) softmax(e[q])

p(q)

However,

If we choose training data with equal numbers of each phone,
then we can assume p(q) = 1/N.

p(~x) is independent of q, so it doesn’t affect recognition. So
let’s assume that p(~x) = 1/N also.
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Softmax Observation Probabilities

Given the assumptions that p(q) = p(~x) = 1/N,

bq(~x) = p(~x |q) = p(q|~x) = softmax(e[q])

The assumptions are unrealistic. We sometimes need to adjust for
low-frequency phones, in order to get good-quality recognition.
But let’s first derive the solution given these assumptions, and then
we’ll see if the assumptions can be relaxed.



Review Softmax Gaussians Discrete Summary

Softmax Observation Probabilities

Given the assumptions that p(q) = p(~x) = 1/N,

bq(~x) = softmax(e[q]) =
exp(e[q])∑N
`=1 exp(e[`])

,

where e[i ] is the i th element of the output excitation row vector,
~e = ~hW , computed as the product of a weight matrix W with the
hidden layer activation row vector, ~h.
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Expected negative log likelihood

The neural net is trained to minimize the expected negative log
likelihood, a.k.a. the cross-entropy between γt(i) and bi (~xt):

LCE = − 1

T

T∑
t=1

N∑
i=1

γt(i) ln bi (~xt)

Remember that, since ~e = ~hW , the weight gradient is just:

dLCE
dwjk

=
T∑
t=1

dLCE
det [k]

∂et [k]

∂wjk
=

T∑
t=1

dLCE
det [k]

ht [j ],

where ht [j ] is the j th component of ~h at time t, and et [k] is the
kth component of ~e at time t.
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Back-prop

Let’s find the loss gradient w.r.t. et [k]. The loss is

LCE = − 1

T

T∑
t=1

N∑
i=1

γt(i) ln bi (~xt)

so its gradient is

dLCE
det [k]

= − 1

T

N∑
i=1

γt(i)

bi (~xt)

∂bi (~xt)

∂et [k]
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Differentiating the softmax

The softmax is

bi (~x) =
exp(e[i ])∑
` exp(e[`])

=
A

B

Its derivative is

∂bi (~x)

∂e[k]
=

1

B

∂A

∂e[k]
− A

B2

∂B

∂e[k]

=


exp(e[i ])∑
` exp(e[`]) −

exp(e[i ])2

(
∑
` exp(e[`]))

2 i = k

− exp(e[i ]) exp(e[k])

(
∑
` exp(e[`]))

2 i 6= k

=

{
bi (~x)− b2

i (~x) i = k

−bi (~x)bk(~x) i 6= k
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The loss gradient

The loss gradient it

dLCE
det [k]

= − 1

T

N∑
i=1

γt(i)

bi (~xt)

∂bi (~xt)

∂et [k]

= − 1

T

γt(k)(1− bk(~xt))−
∑
i 6=k

γt(i)bk(t)


= − 1

T

(
γt(k)− bk(~xt)

N∑
i=1

γt(i)

)

= − 1

T
(γt(k)− bk(~xt))
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Summary: softmax observation probabilities

Training W to minimize the cross-entropy between γt(i) and bi (t),

LCE = − 1

T

T∑
t=1

N∑
i=1

γt(i) ln bi (~xt),

yields the following weight gradient:

dLCE
dwjk

= − 1

T

T∑
t=1

ht [j ] (γt(k)− bk(~xt))

which vanishes when the neural net estimates bk(~xt)→ γt(k) as
well as it can.
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Summary: softmax observation probabilities

The Baum-Welch algorithm alternates between two types of
estimation, often called the E-step (expectation) and the M-step
(maximization or minimization):

1 E-step: Use forward-backward algorithm to re-estimate
γt(i) = p(qt = i |X ,Λ).

2 M-step: Train the neural net for a few iterations of gradient
descent, so that bk(~xt)→ γt(k).
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Final note: Those ridiculous assumptions

As a final note, let’s see if we can eliminate those ridiculous
assumptions, p(q) = p(~x) = 1/N. How? Well, the weight
gradient goes to zero when

∑T
t=1 ht [j ] (γt(k)− bk(~xt)) = 0. There

are at least two ways in which this can happen:

1 bk(~xt) = γt(k). The neural net is successfully estimating the
posterior. This is the best possible solution if
p(q = i) = p(~x) = 1

N .

2 bk(~xt)− γt(k) is uncorrelated with ht [j ], e.g., because it is
zero mean and independent of ~xt .
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Final note: Those ridiculous assumptions

The weight gradient goes to zero if γt(k)− bk(~xt) is zero mean
and independent of ~xt . For example,

bk(~x) might differ from γt(k) by a global scale factor. Instead
of softmax, we might use some other normalization, either
because (a) it’s scaled more like a likelihood, or (b) it has nice
numerical properties. An example of (b) is:

bi (~x) =
exp(e[i ])

maxj exp(e[j ])

bk(~x) might differ from γt(k) by a phone-dependent scale
factor, e.g., we might choose

bi (~x) =
p(q = i |~x)

p(q = i)
=

exp(e[i ])

p(q = i)
∑N

j=1 exp(e[j ])
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Baum-Welch with Gaussian Probabilities

Baum-Welch asks us to minimize the cross-entropy between γt(i)
and bi (~xt):

LCE = − 1

T

T∑
t=1

N∑
i=1

γt(i) ln bi (~xt)

In order to force bi (~xt) to be a likelihood, rather than a posterior,
one way is to use a function that is guaranteed to be a properly
normalized pdf. For example, a Gaussian:

bi (~x) = N (~x ; ~µi ,Σi )
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Diagonal-Covariance Gaussian pdf

Let’s assume the feature vector has D dimensions,
~x = [x1, . . . , xD ]. The Gaussian pdf is

N (~x ; ~µ,Σ) =
1

(2π)D/2|Σ|1/2
e−

1
2

(~x−~µ)Σ−1(~x−~µ)T

Let’s assume a diagonal covariance matrix, Σ = diag(σ2
1, . . . , σ

2
D),

so that

N (~x ; ~µ,Σ) =
1√∏D

d=1 2πσ2
d

e
− 1

2

∑D
d=1

(xd−µd )2

σ2
d
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Logarithm of a diagonal covariance Gaussian

The logarithm of a diagonal-covariance Gaussian is

ln bi (~x) = −1

2

D∑
d=1

(xd − µd)2

σ2
d

− 1

2

D∑
d=1

lnσ2
d −

D

2
ln(2π)
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Minimizing the cross-entropy

Surprise! The cross-entropy between γt(i) and bi (~xt) can be
minimized in closed form, if bi (~x) is Gaussian.

LCE = − 1

T

T∑
t=1

N∑
i=1

γt(i) ln bi (~xt)

=
1

2T

T∑
t=1

N∑
i=1

γt(i)

(
D∑

d=1

(xtd − µid)2

σ2
id

+
D∑

d=1

lnσ2
id + D ln(2π)

)

It’s possible to choose µid and σ2
id so that

dLCE
dµqd

=
dLCE
dσ2

qd

= 0
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Minimizing the cross-entropy: optimum µ

First, let’s optimize µid . We want

0 =
d

dµqd

T∑
t=1

N∑
i=1

γt(i)

(
D∑

d=1

(xtd − µid)2

σ2
id

)

Re-arranging terms, we get

µqd =

∑T
t=1 γt(q)xtd∑T
t=1 γt(q)
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Minimizing the cross-entropy: optimum σ

Second, let’s optimize σ2
id . We want

0 =
d

dσ2
qd

T∑
t=1

N∑
i=1

γt(i)

(
D∑

d=1

(xtd − µid)2

σ2
id

+
D∑

d=1

lnσ2
id

)

Re-arranging terms, we get

σ2
qd =

∑T
t=1 γt(q)(xtd − µqd)2∑T

t=1 γt(q)
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Summary: Gaussian observation probabilities

A Gaussian pdf can be optimized in closed form.

1 The mean is the weighted average of feature vectors:

µid =

∑T
t=1 γt(i)xtd∑T
t=1 γt(i)

2 The variance is the weighted average of squared feature
vectors:

σ2
id =

∑T
t=1 γt(i)(xtd − µid)2∑T

t=1 γt(i)

. . . and then we would re-compute γt(i) using forward-backward,
and so on.
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Baum-Welch with Discrete Probabilities

Finally, suppose that xt is discrete, for example, xt ∈ {1, . . . ,K}.
In this case, a pretty reasonable way to model the observations is
using a lookup table:

bi (k) ≥ 0, 1 =
K∑

k=1

bi (k)
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Optimizing a discrete observation pmf

Again, Baum-Welch asks us to minimize the cross-entropy between
γt(i) and bi (xt):

LCE = − 1

T

T∑
t=1

N∑
i=1

γt(i) ln bi (xt),

but now we also have this constraint to satisfy:

1 =
K∑

k=1

bi (k)
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The Lagrangian

We can find the values bi (k) that minimize LCE subject to the
constraint using a method called Lagrangian optimization.
Basically, we create a Lagrangian, which is defined to be the
original criterion plus λ times the constraint:

L = −
T∑
t=1

N∑
i=1

γt(i) ln bi (xt) + λ

(
1−

K∑
k=1

bi (k)

)

The idea is that there are an infinite number of solutions that will
set dL

dbq(k) = 0; we will choose the one that also sets
∑

k bi (k) = 1.
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Differentiating The Lagrangian

Differentiating the Lagrangian gives

dL
dbq(k)

= −
∑

t:xt=k

γt(q)

bq(k)
− λ

Setting dL
dbq(k) = 0 gives

bq(k) =
1

λ

∑
t:xt=k

γt(q)

Then we choose λ so that
∑

bq(k) = 1.
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Summary: Estimating the Observation Probability
Densities

The Baum-Welch algorithm alternates between two steps,
sometimes called the E-step (expectation) and the M-step
(maximization or minimization):

1 E-step: Use forward-backward algorithm to re-estimate the
posterior probability of the hidden state variable,
γt(i) = p(qt = i |X ,Λ), given the current model parameters.

2 M-step: re-estimate the model parameters, in order to
minimize the cross-entropy between γt(i) and bi (xt):

LCE = − 1

T

T∑
t=1

N∑
i=1

γt(i) ln bi (xt).
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Three Types of Observation Probabilities

Minimizing LCE for a softmax gives

dLCE
dwjk

= − 1

T

T∑
t=1

ht [j ] (γt(k)− bk(~xt))

Minimizing LCE for a Gaussian gives

µid =

∑T
t=1 γt(i)xtd∑T
t=1 γt(i)

σ2
id =

∑T
t=1 γt(i)(xtd − µid)2∑T

t=1 γt(i)

Minimizing LCE for a discrete pmf gives

bi (k) =

∑
t:xt=k γt(i)∑T
t=1 γt(i)
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