Lecture 13: How to train Observation Probability Densities

Mark Hasegawa-Johnson
All content CC-SA 4.0 unless otherwise specified.

ECE 417: Multimedia Signal Processing, Fall 2020
(1) Review: Hidden Markov Models
(2) Softmax Observation Probabilities
(3) Gaussian Observation Probabilities

4 Discrete Observation Probabilities
(5) Summary

Outline

(1) Review: Hidden Markov Models

(2) Softmax Observation Probabilities

(3) Gaussian Observation Probabilities

4 Discrete Observation Probabilities
(5) Summary

Hidden Markov Model

(1) Start in state $q_{t}=i$ with pmf π_{i}.
(2) Generate an observation, \vec{x}, with pdf $b_{i}(\vec{x})$.
(3) Transition to a new state, $q_{t+1}=j$, according to pmf $a_{i j}$.
(3) Repeat.

The Forward Algorithm

Definition: $\alpha_{t}(i) \equiv p\left(\vec{x}_{1}, \ldots, \vec{x}_{t}, q_{t}=i \mid \Lambda\right)$. Computation:
(1) Initialize:

$$
\alpha_{1}(i)=\pi_{i} b_{i}\left(\vec{x}_{1}\right), \quad 1 \leq i \leq N
$$

(2) Iterate:

$$
\alpha_{t}(j)=\sum_{i=1}^{N} \alpha_{t-1}(i) a_{i j} b_{j}\left(\vec{x}_{t}\right), \quad 1 \leq j \leq N, 2 \leq t \leq T
$$

(3) Terminate:

$$
p(X \mid \Lambda)=\sum_{i=1}^{N} \alpha_{T}(i)
$$

The Backward Algorithm

Definition: $\beta_{t}(i) \equiv p\left(\vec{x}_{t+1}, \ldots, \vec{x}_{T} \mid q_{t}=i, \Lambda\right)$. Computation:
(1) Initialize:

$$
\beta_{T}(i)=1, \quad 1 \leq i \leq N
$$

(2) Iterate:

$$
\beta_{t}(i)=\sum_{j=1}^{N} a_{i j} b_{j}\left(\vec{x}_{t+1}\right) \beta_{t+1}(j), \quad 1 \leq i \leq N, 1 \leq t \leq T-1
$$

(3) Terminate:

$$
p(X \mid \Lambda)=\sum_{i=1}^{N} \pi_{i} b_{i}\left(\vec{x}_{1}\right) \beta_{1}(i)
$$

The Baum-Welch Algorithm

(1) Initial State Probabilities:

$$
\pi_{i}^{\prime}=\frac{\sum_{\text {sequences }} \gamma_{1}(i)}{\# \text { sequences }}
$$

(2) Transition Probabilities:

$$
a_{i j}^{\prime}=\frac{\sum_{t=1}^{T-1} \xi_{t}(i, j)}{\sum_{j=1}^{N} \sum_{t=1}^{T-1} \xi_{t}(i, j)}
$$

(3) Observation Probabilities:

$$
\mathcal{L}=-\frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{N} \gamma_{t}(i) \ln b_{i}\left(\vec{x}_{t}\right)
$$

Outline

(1) Review: Hidden Markov Models

(2) Softmax Observation Probabilities
(3) Gaussian Observation Probabilities

4 Discrete Observation Probabilities
(5) Summary

Review: Conditional Probability

The relationship among posterior, prior, evidence and likelihood is

$$
p(q \mid \vec{x}) p(\vec{x})=p(\vec{x} \mid q) p(q)
$$

Since softmax is normalized so that $1=\sum_{q} \operatorname{softmax}(e[q])$, it makes most sense to interpret softmax $(e[q])=p(q \mid \vec{x})$. Therefore, the likelihood should be

$$
b_{q}(\vec{x}) \equiv p(\vec{x} \mid q)=\frac{p(\vec{x}) \operatorname{softmax}(e[q])}{p(q)}
$$

Relationship between the likelihood and the posterior

Therefore, the likelihood should be

$$
b_{q}(\vec{x}) \equiv p(\vec{x} \mid q)=\frac{p(\vec{x}) \operatorname{softmax}(e[q])}{p(q)}
$$

However,

- If we choose training data with equal numbers of each phone, then we can assume $p(q)=1 / N$.
- $p(\vec{x})$ is independent of q, so it doesn't affect recognition. So let's assume that $p(\vec{x})=1 / N$ also.

Softmax Observation Probabilities

Given the assumptions that $p(q)=p(\vec{x})=1 / N$,

$$
b_{q}(\vec{x})=p(\vec{x} \mid q)=p(q \mid \vec{x})=\operatorname{softmax}(e[q])
$$

The assumptions are unrealistic. We sometimes need to adjust for low-frequency phones, in order to get good-quality recognition. But let's first derive the solution given these assumptions, and then we'll see if the assumptions can be relaxed.

Softmax Observation Probabilities

Given the assumptions that $p(q)=p(\vec{x})=1 / N$,

$$
b_{q}(\vec{x})=\operatorname{softmax}(e[q])=\frac{\exp (e[q])}{\sum_{\ell=1}^{N} \exp (e[\ell])},
$$

where $e[i]$ is the $i^{\text {th }}$ element of the output excitation row vector, $\vec{e}=\vec{h} W$, computed as the product of a weight matrix W with the hidden layer activation row vector, \vec{h}.

Expected negative log likelihood

The neural net is trained to minimize the expected negative log likelihood, a.k.a. the cross-entropy between $\gamma_{t}(i)$ and $b_{i}\left(\vec{x}_{t}\right)$:

$$
\mathcal{L}_{C E}=-\frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{N} \gamma_{t}(i) \ln b_{i}\left(\vec{x}_{t}\right)
$$

Remember that, since $\vec{e}=\vec{h} W$, the weight gradient is just:

$$
\frac{d \mathcal{L}_{C E}}{d w_{j k}}=\sum_{t=1}^{T} \frac{d \mathcal{L}_{C E}}{d e_{t}[k]} \frac{\partial e_{t}[k]}{\partial w_{j k}}=\sum_{t=1}^{T} \frac{d \mathcal{L}_{C E}}{d e_{t}[k]} h_{t}[j],
$$

where $h_{t}[j]$ is the $j^{\text {th }}$ component of \vec{h} at time t, and $e_{t}[k]$ is the $k^{\text {th }}$ component of \vec{e} at time t.

Back-prop

Let's find the loss gradient w.r.t. $e_{t}[k]$. The loss is

$$
\mathcal{L}_{C E}=-\frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{N} \gamma_{t}(i) \ln b_{i}\left(\vec{x}_{t}\right)
$$

so its gradient is

$$
\frac{d \mathcal{L}_{C E}}{d e_{t}[k]}=-\frac{1}{T} \sum_{i=1}^{N} \frac{\gamma_{t}(i)}{b_{i}\left(\vec{x}_{t}\right)} \frac{\partial b_{i}\left(\vec{x}_{t}\right)}{\partial e_{t}[k]}
$$

Differentiating the softmax

The softmax is

$$
b_{i}(\vec{x})=\frac{\exp (e[i])}{\sum_{\ell} \exp (e[\ell])}=\frac{A}{B}
$$

Its derivative is

$$
\begin{aligned}
\frac{\partial b_{i}(\vec{x})}{\partial e[k]} & =\frac{1}{B} \frac{\partial A}{\partial e[k]}-\frac{A}{B^{2}} \frac{\partial B}{\partial e[k]} \\
& = \begin{cases}\frac{\exp (e[i])}{\left.\sum_{\ell} \exp (e l \ell]\right)}-\frac{\exp (e[i])^{2}}{\left(\sum_{\ell} \exp (e[\ell])\right)^{2}} & i=k \\
-\frac{\exp (e[i]) \exp (e[k])}{\left(\sum_{\ell} \exp (e[\ell])\right)^{2}} & i \neq k\end{cases} \\
& = \begin{cases}b_{i}(\vec{x})-b_{i}^{2}(\vec{x}) & i=k \\
-b_{i}(\vec{x}) b_{k}(\vec{x}) & i \neq k\end{cases}
\end{aligned}
$$

The loss gradient

The loss gradient it

$$
\begin{aligned}
\frac{d \mathcal{L}_{C E}}{d e_{t}[k]} & =-\frac{1}{T} \sum_{i=1}^{N} \frac{\gamma_{t}(i)}{b_{i}\left(\vec{x}_{t}\right)} \frac{\partial b_{i}\left(\vec{x}_{t}\right)}{\partial e_{t}[k]} \\
& =-\frac{1}{T}\left(\gamma_{t}(k)\left(1-b_{k}\left(\vec{x}_{t}\right)\right)-\sum_{i \neq k} \gamma_{t}(i) b_{k}(t)\right) \\
& =-\frac{1}{T}\left(\gamma_{t}(k)-b_{k}\left(\vec{x}_{t}\right) \sum_{i=1}^{N} \gamma_{t}(i)\right) \\
& =-\frac{1}{T}\left(\gamma_{t}(k)-b_{k}\left(\vec{x}_{t}\right)\right)
\end{aligned}
$$

Summary: softmax observation probabilities

Training W to minimize the cross-entropy between $\gamma_{t}(i)$ and $b_{i}(t)$,

$$
\mathcal{L}_{C E}=-\frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{N} \gamma_{t}(i) \ln b_{i}\left(\vec{x}_{t}\right)
$$

yields the following weight gradient:

$$
\frac{d \mathcal{L}_{C E}}{d w_{j k}}=-\frac{1}{T} \sum_{t=1}^{T} h_{t}[j]\left(\gamma_{t}(k)-b_{k}\left(\vec{x}_{t}\right)\right)
$$

which vanishes when the neural net estimates $b_{k}\left(\vec{x}_{t}\right) \rightarrow \gamma_{t}(k)$ as well as it can.

Summary: softmax observation probabilities

The Baum-Welch algorithm alternates between two types of estimation, often called the E-step (expectation) and the M-step (maximization or minimization):
(1) E-step: Use forward-backward algorithm to re-estimate $\gamma_{t}(i)=p\left(q_{t}=i \mid X, \Lambda\right)$.
(2) M-step: Train the neural net for a few iterations of gradient descent, so that $b_{k}\left(\vec{x}_{t}\right) \rightarrow \gamma_{t}(k)$.

Final note: Those ridiculous assumptions

As a final note, let's see if we can eliminate those ridiculous assumptions, $p(q)=p(\vec{x})=1 / N$. How? Well, the weight gradient goes to zero when $\sum_{t=1}^{T} h_{t}[j]\left(\gamma_{t}(k)-b_{k}\left(\vec{x}_{t}\right)\right)=0$. There are at least two ways in which this can happen:
(1) $b_{k}\left(\vec{x}_{t}\right)=\gamma_{t}(k)$. The neural net is successfully estimating the posterior. This is the best possible solution if $p(q=i)=p(\vec{x})=\frac{1}{N}$.
(2) $b_{k}\left(\vec{x}_{t}\right)-\gamma_{t}(k)$ is uncorrelated with $h_{t}[j]$, e.g., because it is zero mean and independent of $\overrightarrow{x_{t}}$.

Final note: Those ridiculous assumptions

The weight gradient goes to zero if $\gamma_{t}(k)-b_{k}\left(\vec{x}_{t}\right)$ is zero mean and independent of \vec{x}_{t}. For example,

- $b_{k}(\vec{x})$ might differ from $\gamma_{t}(k)$ by a global scale factor. Instead of softmax, we might use some other normalization, either because (a) it's scaled more like a likelihood, or (b) it has nice numerical properties. An example of (b) is:

$$
b_{i}(\vec{x})=\frac{\exp (e[i])}{\max _{j} \exp (e[j])}
$$

- $b_{k}(\vec{x})$ might differ from $\gamma_{t}(k)$ by a phone-dependent scale factor, e.g., we might choose

$$
b_{i}(\vec{x})=\frac{p(q=i \mid \vec{x})}{p(q=i)}=\frac{\exp (e[i])}{p(q=i) \sum_{j=1}^{N} \exp (e[j])}
$$

Outline

(1) Review: Hidden Markov Models
(2) Softmax Observation Probabilities
(3) Gaussian Observation Probabilities

4 Discrete Observation Probabilities
(5) Summary

Baum-Welch with Gaussian Probabilities

Baum-Welch asks us to minimize the cross-entropy between $\gamma_{t}(i)$ and $b_{i}\left(\vec{x}_{t}\right)$:

$$
\mathcal{L}_{C E}=-\frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{N} \gamma_{t}(i) \ln b_{i}\left(\vec{x}_{t}\right)
$$

In order to force $b_{i}\left(\vec{x}_{t}\right)$ to be a likelihood, rather than a posterior, one way is to use a function that is guaranteed to be a properly normalized pdf. For example, a Gaussian:

$$
b_{i}(\vec{x})=\mathcal{N}\left(\vec{x} ; \vec{\mu}_{i}, \Sigma_{i}\right)
$$

Diagonal-Covariance Gaussian pdf

Let's assume the feature vector has D dimensions, $\vec{x}=\left[x_{1}, \ldots, x_{D}\right]$. The Gaussian pdf is

$$
\mathcal{N}(\vec{x} ; \vec{\mu}, \Sigma)=\frac{1}{(2 \pi)^{D / 2}|\Sigma|^{1 / 2}} e^{-\frac{1}{2}(\vec{x}-\vec{\mu}) \Sigma^{-1}(\vec{x}-\vec{\mu})^{T}}
$$

Let's assume a diagonal covariance matrix, $\Sigma=\operatorname{diag}\left(\sigma_{1}^{2}, \ldots, \sigma_{D}^{2}\right)$, so that

$$
\mathcal{N}(\vec{x} ; \vec{\mu}, \Sigma)=\frac{1}{\sqrt{\prod_{d=1}^{D} 2 \pi \sigma_{d}^{2}}} e^{-\frac{1}{2} \sum_{d=1}^{D} \frac{\left(x_{d}-\mu_{d}\right)^{2}}{\sigma_{d}^{2}}}
$$

Logarithm of a diagonal covariance Gaussian

The logarithm of a diagonal-covariance Gaussian is

$$
\ln b_{i}(\vec{x})=-\frac{1}{2} \sum_{d=1}^{D} \frac{\left(x_{d}-\mu_{d}\right)^{2}}{\sigma_{d}^{2}}-\frac{1}{2} \sum_{d=1}^{D} \ln \sigma_{d}^{2}-\frac{D}{2} \ln (2 \pi)
$$

Minimizing the cross-entropy

Surprise! The cross-entropy between $\gamma_{t}(i)$ and $b_{i}\left(\vec{x}_{t}\right)$ can be minimized in closed form, if $b_{i}(\vec{x})$ is Gaussian.

$$
\begin{aligned}
\mathcal{L}_{C E} & =-\frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{N} \gamma_{t}(i) \ln b_{i}\left(\vec{x}_{t}\right) \\
& =\frac{1}{2 T} \sum_{t=1}^{T} \sum_{i=1}^{N} \gamma_{t}(i)\left(\sum_{d=1}^{D} \frac{\left(x_{t d}-\mu_{i d}\right)^{2}}{\sigma_{i d}^{2}}+\sum_{d=1}^{D} \ln \sigma_{i d}^{2}+D \ln (2 \pi)\right)
\end{aligned}
$$

It's possible to choose $\mu_{i d}$ and $\sigma_{i d}^{2}$ so that

$$
\frac{d \mathcal{L}_{C E}}{d \mu_{q d}}=\frac{d \mathcal{L}_{C E}}{d \sigma_{q d}^{2}}=0
$$

Minimizing the cross-entropy: optimum μ

First, let's optimize $\mu_{i d}$. We want

$$
0=\frac{d}{d \mu_{q d}} \sum_{t=1}^{T} \sum_{i=1}^{N} \gamma_{t}(i)\left(\sum_{d=1}^{D} \frac{\left(x_{t d}-\mu_{i d}\right)^{2}}{\sigma_{i d}^{2}}\right)
$$

Re-arranging terms, we get

$$
\mu_{q d}=\frac{\sum_{t=1}^{T} \gamma_{t}(q) x_{t d}}{\sum_{t=1}^{T} \gamma_{t}(q)}
$$

Minimizing the cross-entropy: optimum σ

Second, let's optimize $\sigma_{i d}^{2}$. We want

$$
0=\frac{d}{d \sigma_{q d}^{2}} \sum_{t=1}^{T} \sum_{i=1}^{N} \gamma_{t}(i)\left(\sum_{d=1}^{D} \frac{\left(x_{t d}-\mu_{i d}\right)^{2}}{\sigma_{i d}^{2}}+\sum_{d=1}^{D} \ln \sigma_{i d}^{2}\right)
$$

Re-arranging terms, we get

$$
\sigma_{q d}^{2}=\frac{\sum_{t=1}^{T} \gamma_{t}(q)\left(x_{t d}-\mu_{q d}\right)^{2}}{\sum_{t=1}^{T} \gamma_{t}(q)}
$$

Summary: Gaussian observation probabilities

A Gaussian pdf can be optimized in closed form.
(1) The mean is the weighted average of feature vectors:

$$
\mu_{i d}=\frac{\sum_{t=1}^{T} \gamma_{t}(i) x_{t d}}{\sum_{t=1}^{T} \gamma_{t}(i)}
$$

(2) The variance is the weighted average of squared feature vectors:

$$
\sigma_{i d}^{2}=\frac{\sum_{t=1}^{T} \gamma_{t}(i)\left(x_{t d}-\mu_{i d}\right)^{2}}{\sum_{t=1}^{T} \gamma_{t}(i)}
$$

....and then we would re-compute $\gamma_{t}(i)$ using forward-backward, and so on.

Outline

(1) Review: Hidden Markov Models

(2) Softmax Observation Probabilities
(3) Gaussian Observation Probabilities
(4) Discrete Observation Probabilities
(5) Summary

Baum-Welch with Discrete Probabilities

Finally, suppose that x_{t} is discrete, for example, $x_{t} \in\{1, \ldots, K\}$. In this case, a pretty reasonable way to model the observations is using a lookup table:

$$
b_{i}(k) \geq 0, \quad 1=\sum_{k=1}^{K} b_{i}(k)
$$

Optimizing a discrete observation pmf

Again, Baum-Welch asks us to minimize the cross-entropy between $\gamma_{t}(i)$ and $b_{i}\left(x_{t}\right)$:

$$
\mathcal{L}_{C E}=-\frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{N} \gamma_{t}(i) \ln b_{i}\left(x_{t}\right)
$$

but now we also have this constraint to satisfy:

$$
1=\sum_{k=1}^{K} b_{i}(k)
$$

The Lagrangian

We can find the values $b_{i}(k)$ that minimize $\mathcal{L}_{C E}$ subject to the constraint using a method called Lagrangian optimization. Basically, we create a Lagrangian, which is defined to be the original criterion plus λ times the constraint:

$$
\mathcal{L}=-\sum_{t=1}^{T} \sum_{i=1}^{N} \gamma_{t}(i) \ln b_{i}\left(x_{t}\right)+\lambda\left(1-\sum_{k=1}^{K} b_{i}(k)\right)
$$

The idea is that there are an infinite number of solutions that will set $\frac{d \mathcal{L}}{d b_{q}(k)}=0$; we will choose the one that also sets $\sum_{k} b_{i}(k)=1$.

Differentiating The Lagrangian

Differentiating the Lagrangian gives

$$
\frac{d \mathcal{L}}{d b_{q}(k)}=-\sum_{t: x_{t}=k} \frac{\gamma_{t}(q)}{b_{q}(k)}-\lambda
$$

Setting $\frac{d \mathcal{L}}{d b_{q}(k)}=0$ gives

$$
b_{q}(k)=\frac{1}{\lambda} \sum_{t: x_{t}=k} \gamma_{t}(q)
$$

Then we choose λ so that $\sum b_{q}(k)=1$.

Outline

(1) Review: Hidden Markov Models
(2) Softmax Observation Probabilities
(3) Gaussian Observation Probabilities

4 Discrete Observation Probabilities
(5) Summary

Summary: Estimating the Observation Probability

Densities

The Baum-Welch algorithm alternates between two steps, sometimes called the E-step (expectation) and the M-step (maximization or minimization):
(1) E-step: Use forward-backward algorithm to re-estimate the posterior probability of the hidden state variable, $\gamma_{t}(i)=p\left(q_{t}=i \mid X, \Lambda\right)$, given the current model parameters.
(2) M-step: re-estimate the model parameters, in order to minimize the cross-entropy between $\gamma_{t}(i)$ and $b_{i}\left(x_{t}\right)$:

$$
\mathcal{L}_{C E}=-\frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{N} \gamma_{t}(i) \ln b_{i}\left(x_{t}\right)
$$

Three Types of Observation Probabilities

- Minimizing $\mathcal{L}_{C E}$ for a softmax gives

$$
\frac{d \mathcal{L}_{C E}}{d w_{j k}}=-\frac{1}{T} \sum_{t=1}^{T} h_{t}[j]\left(\gamma_{t}(k)-b_{k}\left(\vec{x}_{t}\right)\right)
$$

- Minimizing $\mathcal{L}_{C E}$ for a Gaussian gives

$$
\begin{aligned}
\mu_{i d} & =\frac{\sum_{t=1}^{T} \gamma_{t}(i) x_{t d}}{\sum_{t=1}^{T} \gamma_{t}(i)} \\
\sigma_{i d}^{2} & =\frac{\sum_{t=1}^{T} \gamma_{t}(i)\left(x_{t d}-\mu_{i d}\right)^{2}}{\sum_{t=1}^{T} \gamma_{t}(i)}
\end{aligned}
$$

- Minimizing $\mathcal{L}_{C E}$ for a discrete pmf gives

$$
b_{i}(k)=\frac{\sum_{t: x_{t}=k} \gamma_{t}(i)}{\sum_{t=1}^{T} \gamma_{t}(i)}
$$

