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Noisy Telephones

In the 1920s, Harvey Fletcher had a problem.

Telephones were noisy (very noisy).

Sometimes, people could hear the speech. Sometimes not.

Fletcher needed to figure out why people could or couldn’t
hear the speech, and what Western Electric could do about it.
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Tone-in-Noise Masking Experiments

He began playing people pure tones mixed with noise, and asking
people “do you hear a tone”? If 50% of samples actually contained
a tone, and if the listener was right 75% of the time, he considered
the tone “audible.”
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Tone-in-Noise Masking Experiments

People’s ears are astoundingly good. This tone is inaudible in this
noise. But if the tone was only 2× greater amplitude, it would be
audible.
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Tone-in-Noise Masking Experiments

Even more astounding: the same tone, in a very slightly different
noise, is perfectly audible, to every listener.
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What’s going on (why can listeners hear the difference?)
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Review: Discrete Fourier Transform

Remember the discrete Fourier transform (DFT):

X [k] =
N−1∑
n=0

x [n]e−j(
2πkn
N ), x [n] =

1

N

N−1∑
k=0

X [k]e j(
2πkn
N )

This is useful because, unlike X (ω), we can actually compute it on
a computer (it’s discrete in both time and frequency). If x [n] is
finite length (nonzero only for 0 ≤ n ≤ N − 1), then

X [k] = X

(
ω =

2πk

N

)
We sometimes write this as X [k] = X (ωk), where, obviously,
ωk = 2πk

N .
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What’s going on (why can listeners hear the difference?)
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Fourier to the Rescue

Here’s the DFT power spectrum (|X [k]|2) of the tone, the white
noise, and the combination.
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Bandstop Noise

The “bandstop” noise is called “bandstop” because I arbitrarily set
its power to zero in a small frequency band centered at 1kHz. Here
is the power spectrum. Notice that, when the tone is added to the
noise signal, the little bit of extra power makes a noticeable
(audible) change, because there is no other power at that
particular frequency.
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Fletcher’s Model of Masking

Fletcher proposed the following model of hearing in noise:

1 The human ear pre-processes the audio using a bank of
bandpass filters.

2 The power of the noise signal, in the kth bandpass filter, is Nk .

3 The power of the noise+tone is Nk + Tk .

4 If there is any band, k , in which Nk+Tk
Nk

> threshold, then the
tone is audible. Otherwise, not.
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Von Bekesy and the Basilar Membrane

In 1928, Georg von Békésy found Fletcher’s auditory filters.

Surprise: they are mechanical.

The inner ear contains a long (3cm), thin (1mm), tightly
stretched membrane (the basilar membrane). Like a steel
drum, it is tuned to different frequencies at different places:
the outer end is tuned to high frequencies, the inner end to
low frequencies.

About 30,000 nerve cells lead from the basilar membrane to
the brain stem. Each one sends a signal if its part of the
basilar membrane vibrates.
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Blausen.com staff (2014). “Medical gallery of Blausen Medical 2014.” WikiJournal of Medicine 1 (2).

DOI:10.15347/wjm/2014.010. ISSN 2002-4436.
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Dick Lyon, public domain image, 2007. https://en.wikipedia.org/wiki/File:Cochlea_Traveling_Wave.png

https://en.wikipedia.org/wiki/File:Cochlea_Traveling_Wave.png
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Frequency responses of the auditory filters

Here are the squared magnitude frequency responses (|H(ω)|2) of
26 of the 30000 auditory filters. I plotted these using the
parametric model published by Patterson in 1974:
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Filtered white noise

An acoustic white noise signal (top), filtered through a spot on the
basilar membrane with a particular impulse response (middle),
might result in narrowband-noise vibration of the basilar membrane
(bottom).
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Filtered white noise

An acoustic white noise signal (top), filtered through a spot on the
basilar membrane with a particular impulse response (middle),
might result in narrowband-noise vibration of the basilar membrane
(bottom).
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Tone + Noise: Waveform

If there is a tone embedded in the noise, then even after filtering,
it’s very hard to see that the tone is there. . .
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Filtered white noise

But, Fourier comes to the rescue! In the power spectrum, it is
almost possible, now, to see that the tone is present in the white
noise masker.
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Filtered bandstop noise

If the masker is bandstop noise, instead of white noise, the
spectrum after filtering looks very different. . .
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Filtered tone + bandstop noise

. . . and the tone+noise looks very, very different from the noise by
itself.

This is why the tone is audible!
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What an excellent model! Why should I believe it?

Let’s spend the rest of today’s lecture talking about:

What is a power spectrum?

What is noise?

What is autocorrelation?

Then, next lecture, we will find out what happens to noise when it
gets filtered by an auditory filter.



Motivation Filters Power Noise Autocorrelation Summary

Outline

1 Motivation: Noisy Telephones

2 Auditory Filters

3 Power Spectrum

4 Noise

5 Autocorrelation

6 Summary



Motivation Filters Power Noise Autocorrelation Summary

What is power?

Power (Watts=Joules/second) is usually the time-domain
average of amplitude squared.

Example: electrical power P = Ri2(t) = v2(t)/R

Example: acoustic power P = 〈z0u2(t)〉 = p2(t)/z0

Example: mechanical power (friction) P = µv2(t) = f 2(t)/µ

where, by x2(t), I mean the time-domain average of x2(t).



Motivation Filters Power Noise Autocorrelation Summary

What is power?

In signal processing, we abstract away from the particular problem,
and define instantaneous power as just

P = x2(t)

or, in discrete time,
P = x2[n]
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Parseval’s Theorem for Energy

Parseval’s theorem tells us that the energy of a signal is the same
in both the time domain and frequency domain. Here’s Parseval’s
theorem for the DTFT:

∞∑
n=−∞

x2[n] =
1

2π

∫ π

−π
|X (ω)|2 dω

. . . and here it is for the DFT:

N−1∑
n=0

x2[n] =
1

N

N−1∑
k=0

|X [k]|2
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Parseval’s Theorem

Notice that the white noise spectrum (middle window, here) has
an energy of exactly

1

N

N−1∑
k=0

|X [k]|2 = 1
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Parseval’s Theorem

The window length here is 20ms, at a sampling rate of
Fs = 8000Hz, so N = (0.02)(8000) = 160 samples. The white
noise signal is composed of independent Gaussian random
variables, with zero mean, and with standard deviation of
σx = 1√

N
= 0.079, so

∑N−1
n=0 x2[n] ≈ Nσ2

x = 1.
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Parseval’s Theorem for Power

The Power of a signal is energy divided by duration. So,

1

N

N−1∑
n=0

x2[n] =
1

2πN

∫ π

−π
|X (ω)|2 dω

. . . and here it is for the DFT:

1

N

N−1∑
n=0

x2[n] =
1

N2

N−1∑
k=0

|X [k]|2
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Power Spectrum

The DFT power spectrum of a signal is defined to be
R[k] = 1

N |X [k]|2. This is useful because the signal power is

1

N

N−1∑
n=0

x2[n] =
1

N

N−1∑
k=0

R[k]

Similary, the DTFT power spectrum of a signal of length N can be
defined to be R(ω) = 1

N |X (ω)|2, because the signal power is

1

N

N−1∑
n=0

x2[n] =
1

2π

∫ π

−π
R(ω)dω

In this class we will almost never use the power spectrum of an
infinite length signal, but if we need it, it can be defined as

R(ω) = lim
N→∞

1

N

∣∣∣∣∣∣
(N−1)/2∑

n=−(N−1)/2

x [n]e−jωn

∣∣∣∣∣∣
2
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What is noise?

“Noise” is a signal, x [n], each of whose samples is a random
variable.

For the rest of this course, I’ll assume that the noise is
stationary, which means that the pdf of x [n] is the same as
the pdf of x [n − 1] (identically distributed).

If each sample is also uncorrelated with the other samples
(we write: x [n] ⊥ x [n + 1]), we call it white noise. This is
because (as I will show you soon) its expected power
spectrum is flat, like the spectrum of white light.

The noise we talk about most commonly is zero-mean
Gaussian white noise, i.e.,

x [n] ∼ N (0, σ2), x [n] ⊥ x [n + 1]
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Sums of Gaussian random variables

Remember that the sum of Gaussian random variables is Gaussian.
So any variable z defined as

z = a0x [0] + a1x [1] + . . . aN−1x [N − 1]

is itself a Gaussian random variable, with mean given by

E [z ] =
N−1∑
n=0

anE [x [n]]

and with variance given by

σ2
z =

N−1∑
n=0

a2
nσ

2
x[n] + (terms that depend on covariances)

In particular, if x [n] is zero-mean Gaussian white noise, then

z ∼ N (0,
∑
n

a2
nσ

2)
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What’s the Fourier transform of Noise?

Remember the formula for the DFT:

X [k] =
N−1∑
n=0

e−jωknx [n], ωk =
2πk

N

If x [n] is a zero-mean Gaussian random variable, then so is X [k]!
More specifically, it is a complex number with Gaussian real and
imaginary parts:

XR [k] =
N−1∑
n=0

cos(ωkn)x [n], XI [k] = −
N−1∑
n=0

sin(ωkn)x [n]

Using the sums-of-Gaussians formulas on the previous page, you
can show that

E [XR [k]] = E [XR [k]] = 0, Var (XR [k]) = Var (XI [k]) =
Nσ2

2
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What’s the Fourier transform of Noise?

Notice how totally useless it would be to plot the expected value of
the DFT — it would always be zero!

E [XR [k]] = E [XI [k]] = 0

Instead, it’s more useful to plot the variances:

Var (XR [k]) = E
[
X 2
R [k]

]
=

Nσ2

2

Var (XI [k]) = E
[
X 2
I [k]

]
=

Nσ2

2

In fact, putting those two things together, we get something even
nicer:

E

[
1

N
|X [k]|2

]
=

1

N
E
[
X 2
R [k] + X 2

I [k]
]

= σ2
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An example of White Noise

The window length here is 20ms, at a sampling rate of
Fs = 8000Hz, so N = (0.02)(8000) = 160 samples. The white
noise signal is composed of independent Gaussian random
variables, with zero mean, and with variance of σ2

x = 1
N , so its

total energy is
∑N−1

n=0 x2[n] ≈ Nσ2 = 1.
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White Noise Energy Spectrum

The energy spectrum |X [k]|2 is itself a random variable, but the
expected value of the power spectrum is

E
[
|X [k]|2

]
= E

[
X 2
R [k] + X 2

I [k]
]

= 1

which is shown, here, by the dashed horizontal line.
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Inverse DTFT of the Power Spectrum

Since the power spectrum of noise is MUCH more useful than the
expected Fourier transform, let’s see what the inverse Fourier
transform of the power spectrum is. Let’s call R(ω) the power
spectrum, and r [n] its inverse DTFT.

R(ω) =
1

N
|X (ω)|2 =

1

N
X (ω)X ∗(ω)

where X ∗(ω) means complex conjugate. Since multiplying the
DTFT means convolution in the time domain, we know that

r [n] =
1

N
x [n] ∗ z [n]

where z [n] is the inverse transform of X ∗(ω) (we haven’t figured
out what that is, yet).
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Inverse DTFT of the Power Spectrum

So what’s the inverse DFT of X ∗(ω)? If we assume that x [n] is
real, we get that

X ∗(ω) =

( ∞∑
n=−∞

x [n]e−jωn

)∗

=
∞∑

n=−∞
x [n]e jωn

=
∞∑

m=−∞
x [−m]e−jωm

So if x [n] is real, then the inverse DTFT of X ∗(ω) is x [−n]!
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Autocorrelation

The power spectrum is

R(ω) =
1

N
|X (ω)|2

Its inverse Fourier transform is the autocorrelation,

r [n] =
1

N
x [n] ∗ x [−n] =

1

N

∞∑
m=−∞

x [m]x [m − n]

This relationship, r [n]↔ R(ω), is called Wiener’s theorem, named
after Norbert Wiener, the inventor of cybernetics.



Motivation Filters Power Noise Autocorrelation Summary

Convolution vs. Autocorrelation

By Cmglee, CC-SA 3.0,

https://commons.wikimedia.org/wiki/File:Comparison_convolution_correlation.svg

https://commons.wikimedia.org/wiki/File:Comparison_convolution_correlation.svg
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Autocorrelation is also a random variable!

Notice that, just as the power spectrum is a random variable,
the autocorrelation is also a random variable.
The autocorrelation is the average of N consecutive products,
thus

E [r [n]] = E

[
1

N

N−1∑
m=0

x [m]x [m − n]

]
= E [x [m]x [m − n]]

. . . where the last form only makes sense if the signal is
stationary (all samples identically distributed), so that
E [x [m]x [m − n]] doesn’t depend on m.
The expected autocorrelation is related to the covariance and
the mean:

E [r [n]] = Cov (x [m], x [m − n]) + E [x [m]]E [x [m − n]]

If x [n] is zero-mean, that means

E [r [n]] = Cov (x [m], x [m − n])
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Autocorrelation of white noise

If x [n] is zero-mean white noise, then

E [r [n]] = E [x [m]x [m − n]] =

{
σ2 n = 0

0 otherwise

We can write
E [r [n]] = σ2δ[n]
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Summary

Masking: a pure tone can be heard, in noise, if there is at
least one auditory filter through which Nk+Tk

Nk
> threshold.

Parseval’s Theorem:

1

N

N−1∑
n=0

x2[n] =
1

N

N−1∑
k=0

R[k] =
1

2π

∫ π

−π
R(ω)dω

Wiener’s Theorem:

R(ω)↔ r [n] =
1

N
x [n] ∗ x [−n]

The power spectrum and autocorrelation of noise are,
themselves, random variables. For zero-mean white noise of
length N, their expected values are

E [R[k]] = σ2

E [r [n]] = σ2δ[n]
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