UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Department of Electrical and Computer Engineering

ECE 417 Multimedia Signal Processing

Spring 2016

EXAM 1

Thursday, February 25, 2016

- This is a CLOSED BOOK exam. You may use one sheet (front and back) of handwritten notes.
- No calculators are permitted. You need not simplify explicit numerical expressions.
- There are a total of 100 points in the exam. Each problem specifies its point total. Plan your work accordingly.
- You must SHOW YOUR WORK to get full credit.

Problem	Score
1	
2	
3	
4	
5	
Total	

Name: \qquad
\qquad

Possibly Useful Formulas

Z transform/DTFT

$$
X(z)=\mathcal{Z}\{x[n]\}=\sum_{n=-\infty}^{\infty} x[n] z^{-n}, \quad x[n]=\mathcal{Z}^{-1}\{X(z)\}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} X\left(e^{j \omega}\right) e^{j \omega n} d \omega
$$

Convolution

$$
x[n] * h[n]=\sum_{m=-\infty}^{\infty} x[m] h[n-m]
$$

DFT

$$
X[k]=\operatorname{DFT}\{x[n]\}=\sum_{n=0}^{N-1} x[n] e^{-j 2 \pi k n / N}, \quad x[n]=\operatorname{DFT}^{-1}\{X[k]\}=\frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j 2 \pi k n / N}
$$

Frequency Conversion: Hertz (f) to $\operatorname{Mel}(m)$

$$
m=G \ln (1+f / 700), \quad G \equiv \frac{1000}{\ln (1+1000 / 700)}
$$

Z-Transform/DTFT Pairs	
$h[n]$	$H\left(e^{j \omega}\right)$
$\frac{\sin \omega_{c} n}{\pi n}$	$H(\omega)=\left\{\begin{array}{cl}1 & \|\omega\|<\omega_{c} \\ 0 & \text { otherwise } \\ u[n]-u[n-N] & e^{-j \frac{\omega(N-1)}{2}} \frac{\sin (\omega N / 2)}{\sin (\omega / 2)} \\ \delta[n-\tau] & e^{-j \omega \tau} \\ e^{j \alpha n} & 2 \pi \delta(\omega-\alpha) \\ \sum_{\ell=-\infty}^{\infty} \delta\left[n-\ell T_{0}\right] & \left(\frac{2 \pi}{T_{0}}\right) \sum_{k=1}^{T_{0}-1} \delta\left(\omega-\frac{2 \pi k}{T_{0}}\right) \\ \hline\end{array} \mathrm{l}\right.$

Useful Angles			
θ	$\cos \theta$	$\sin \theta$	$e^{j \theta}$
0	1	0	1
$\pi / 6$	$\sqrt{3} / 2$	$1 / 2$	$\sqrt{3} / 2+j / 2$
$\pi / 4$	$\sqrt{2} / 2$	$\sqrt{2} / 2$	$\sqrt{2} / 2+j \sqrt{2} / 2$
$\pi / 3$	$1 / 2$	$\sqrt{3} / 2$	$1 / 2+j \sqrt{3} / 2$
$\pi / 2$	0	1	j
π	-1	0	-1
$3 \pi / 2$	1	-1	$-j$
2π	1	0	1

Problem 1 (15 points)

A signal $s[n]$ is corrupted by filtering through a reverberant channel, $h[n]$, producing

$$
x[n]=h[n] * s[n]
$$

Suppose you don't know the channel, but you do know its cepstrum, defined as

$$
\hat{h}[n]=\mathcal{Z}^{-1}\{\ln (\mathcal{Z}\{h[n]\})\}
$$

where $\mathcal{Z}\left\}\right.$ is the Z transform, and $\mathcal{Z}^{-1}\{ \}$ is the inverse Z transform. Draw the block diagram of a system that takes the following two inputs, and produces the following output. For each block in your block diagram, write an equation specifying its input-output relationship.

- INPUT: $x[n]$, the reverberant signal
- INPUT: $\hat{h}[n]$, the cepstrum of the channel
- OUTPUT: $s[n]$, the clean signal

Problem 2 (15 points)

Suppose that

$$
x[n]=s[n]+0.9 s[n-80]
$$

Define the cepstrum to be $\hat{x}[n]=\mathcal{Z}^{-1}\{\ln (\mathcal{Z}\{x[n]\})\}$. Find the relationship between $\hat{x}[n]$ and $\hat{s}[n]$. HINT: You might find it useful to know that

$$
\ln (1+x)=x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}-\ldots=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^{n}
$$

\qquad

Problem 3 (20 points)

A speech signal, $x[n]$, has been sampled at F_{s} samples/second. Suppose the signal is only N samples long, so we can compute its N-sample DFT, $X[k]$. The mel-frequency spectrum is then defined to be

$$
\tilde{X}[m]=\sum_{k=0}^{N / 2} H_{m}[k] \cdot|X[k]|, \quad 1 \leq m \leq M
$$

where the filters are given by

$$
H_{m}[k]= \begin{cases}\frac{k-k_{m-1}}{k_{m}-k_{m}-1} & k_{m-1} \leq k \leq k_{m} \\ \frac{k_{m+1}-k}{k_{m+1}-k_{m}} & k_{m} \leq k \leq k_{m+1} \\ 0 & \text { otherwise }\end{cases}
$$

where $k_{0}=0$ and $k_{M+1}=N / 2$.
Find a formula for $k_{m}, 1 \leq m \leq M$. Your formula should depend on m, M, N, and/or F_{s}, and it should make use of a formula from the "Possibly Useful Formulas" page of this exam.

Problem 4 (30 points)

Suppose that you have M different D-dimensional vectorized face images, $\vec{\Gamma}_{m}=\left[\gamma_{1 m}, \ldots, \gamma_{D m}\right]^{T}$, whose mean is $\vec{\Psi}=\left[\psi_{1}, \ldots, \psi_{D}\right]^{T}$. Define the data matrix to be $A=\left[\vec{\Gamma}_{1}-\vec{\Psi}, \ldots, \vec{\Gamma}_{M}-\vec{\Psi}\right]$, and suppose that the eigenvectors and eigenvalues of $A^{T} A$ are given by $U=\left[\vec{u}_{1}, \ldots, \vec{u}_{M}\right]$ and $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{M}\right)$.
(a) Find the numerical value of the vector $U^{T} \vec{u}_{3}$.
(b) Your goal is to find a $(D \times M)$ matrix $V=\left[\vec{v}_{1}, \ldots, \vec{v}_{M}\right]$ so that $\vec{\Omega}_{m}=V^{T}\left(\vec{\Gamma}_{m}-\vec{\Psi}\right)$ is a vector containing the first M principal components of the image $\vec{\Gamma}_{m}$. Write an equation showing how V can be computed from $\vec{\Psi}, A, U$, and/or Λ.

Problem 5 (20 points)

Suppose that you have M different D-dimensional vectorized face images, $\vec{\Gamma}_{m}=\left[\gamma_{1 m}, \ldots, \gamma_{D m}\right]^{T}$, whose mean is $\vec{\Psi}=\left[\psi_{1}, \ldots, \psi_{D}\right]^{T}$. Define the scatter matrix to be

$$
S=\sum_{m=1}^{M}\left(\vec{\Gamma}_{m}-\vec{\Psi}\right)\left(\vec{\Gamma}_{m}-\vec{\Psi}\right)^{T}
$$

Suppose that the eigenvectors and eigenvalues of S are $V=\left[\vec{v}_{1}, \ldots, \vec{v}_{D}\right]$ and $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{D}\right)$. You want to find a value of K such that the K-dimensional PCA projection $\vec{\Omega}_{m}=\left[\vec{v}_{1}, \ldots, \vec{v}_{K}\right]^{T}\left(\vec{\Gamma}_{m}-\right.$ $\vec{\Psi}$) has the following property:

$$
\begin{equation*}
\sum_{m=1}^{M}\left|\vec{\Omega}_{m}\right|^{2}=(0.95) \sum_{m=1}^{M}\left|\vec{\Gamma}_{m}-\vec{\Psi}\right|^{2} \tag{1}
\end{equation*}
$$

Specify an equation that, if satisfied, will guarantee the truth of Eq. ??. Your equation should only include the scalars M, D, K, and/or the eigenvalues $\lambda_{d}(1 \leq d \leq D)$; your equation should not include $\vec{\Gamma}_{m}$ or $\vec{\Psi}$.

