UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Department of Electrical and Computer Engineering

ECE 417 Principles of Signal Analysis

Spring 2015

EXAM 3

Monday, May 11, 2015

- This is a CLOSED BOOK exam. You may use one sheet (front and back) of handwritten notes.
- No calculators are permitted. You need not simplify explicit numerical expressions.
- There are a total of 100 points in the exam. Each problem specifies its point total. Plan your work accordingly.
- You must SHOW YOUR WORK to get full credit.

Problem	Score
1	
2	
3	
4	
5	
Total	

Name: \qquad
\qquad

Possibly Useful Formulas

$$
\begin{aligned}
& x[n]=\frac{1}{2 \pi} \int_{-\pi}^{\pi} X(\omega) e^{j \omega n} d \omega \leftrightarrow X(\omega)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n} \\
& x[n]=\frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j 2 \pi k n / N} \leftrightarrow X[k]=\sum_{n=0}^{N-1} x[n] e^{-j 2 \pi k n / N} \\
& h[n]=\frac{\sin \omega_{c} n}{\pi n} \leftrightarrow H(\omega)= \begin{cases}1 & |\omega|<\omega_{c} \\
0 & \text { otherwise }\end{cases} \\
& u[n]-u[n-N] \leftrightarrow e^{-j \frac{\omega(N-1)}{2}} \frac{\sin (\omega N / 2)}{\sin (\omega / 2)} \\
& \delta[n] \leftrightarrow 1 \\
& e^{j \alpha n} \leftrightarrow 2 \pi \delta(\omega-\alpha) \\
& \sum_{\ell=-\infty}^{\infty} \delta\left[n-\ell T_{0}\right] \leftrightarrow\left(\frac{2 \pi}{T_{0}}\right) \sum_{k=1}^{T_{0}-1} \delta\left(\omega-\frac{2 \pi k}{T_{0}}\right) \\
& S=\sum_{k=1}^{n}\left(\vec{x}_{k}-\vec{m}\right)\left(\vec{x}_{k}-\vec{m}\right)^{T} \\
& \mathcal{N}(\vec{x} ; \vec{\mu}, \Sigma)=\frac{1}{(2 \pi)^{\operatorname{dim}(\vec{x}) / 2} \operatorname{det}(\Sigma)^{1 / 2}} e^{-\frac{1}{2}(\vec{x}-\vec{\mu})^{T} \Sigma^{-1}(\vec{x}-\vec{\mu})}
\end{aligned}
$$

\qquad

Problem 1 (20 points)

The Minkowski $\frac{1}{2}$-norm is a measure of dissimilarity between vectors $\vec{x}=\left[x_{1}, \ldots, x_{d}\right]^{T}$ and $\vec{y}=\left[y_{1}, \ldots, y_{d}\right]^{T}$. It is defined as

$$
d_{\frac{1}{2}}(\vec{x}, \vec{y})=\left(\sum_{\ell=1}^{d} \sqrt{\left|x_{\ell}-y_{\ell}\right|}\right)^{2}
$$

Does the Minkowski $\frac{1}{2}$-norm satisfy the triangle inequality? If so, prove it. If not, provide a counter-example.

Problem 2 (20 points)

As you know, in any given vector space, it's possible to define an infinite number of different Mahalanobis distances. Consider the Mahalanobis distance measures $d_{a}(\vec{x}, \vec{y})$ and $d_{b}(\vec{x}, \vec{y})$, parameterized, respectively, by the covariance matrices

$$
\Sigma_{a}=\left[\begin{array}{cccc}
a_{1} & 0 & \ldots & 0 \\
0 & a_{2} & 0 & \vdots \\
\vdots & 0 & \ldots & 0 \\
0 & \ldots & 0 & a_{d}
\end{array}\right], \quad \Sigma_{b}=\left[\begin{array}{cccc}
b_{1} & 0 & \ldots & 0 \\
0 & b_{2} & 0 & \vdots \\
\vdots & 0 & \ldots & 0 \\
0 & \ldots & 0 & b_{d}
\end{array}\right]
$$

Your friend Amit wishes to define a third dissimilarity measure, as

$$
d_{c}(\vec{x}, \vec{y})=\sqrt{\frac{1}{2}\left(d_{a}^{2}(\vec{x}, \vec{y})+d_{b}^{2}(\vec{x}, \vec{y})\right)}
$$

Is $d_{c}(\vec{x}, \vec{y})$ a Mahalanobis distance? If so, find the elements of the covariance matrix Σ_{c} in terms of the variables $a_{1}, \ldots, a_{d}, b_{1}, \ldots, b_{d}$. If not, demonstrate that no such covariance matrix exists.
\qquad

Problem 3 (20 points)

For this problem, define the cepstral distance between signals $x[n]$ and $y[n]$ to be

$$
d(x[n], y[n])=\sqrt{\sum_{m=0}^{N-1}(\hat{x}[m]-\hat{y}[m])^{2}}
$$

where the cepstrum is defined as

$$
\hat{x}[m]=\frac{1}{N} \sum_{k=0}^{N-1} \max (0, \log |X[k]|) e^{j 2 \pi k m / N}
$$

and the DFT is defined as

$$
X[k]=\sum_{n=0}^{N-1} x[n] e^{-j 2 \pi k n / N}
$$

In terms of the amplitudes A and B, the frequencies k and ℓ, and the phase terms θ and ϕ, find the cepstral distance between the following two signals:

$$
x[n]=A \cos \left(\frac{2 \pi k n}{N}+\theta\right), \quad y[n]=B \cos \left(\frac{2 \pi \ell n}{N}+\phi\right)
$$

Problem 4 (20 points)

Consider the signal

$$
x[n]=\cos \left(\frac{2 \pi n}{12}\right)+A \cos \left(\frac{2 \pi n}{8}\right)
$$

Assume a frame length of 48 samples. As a function of the parameter A, what is the zerocrossing rate of this signal?
\qquad

Problem 5 (20 points)

A color histogram is a matrix whose element $N\left[k_{R}, k_{B}\right], 1 \leq k_{R} \leq 10$ and $1 \leq k_{B} \leq 10$, is the number of pixels for which $0.1\left(k_{R}-1\right) \leq s_{R}[m, n]<0.1 k_{R}$ and $0.1\left(k_{B}-1\right) \leq s_{B}[m, n]<0.1 k_{B}$. The redshift and blueshift of pixel $\vec{y}[m, n]=[r[m, n], g[m, n], b[m, n]]^{T}$ are defined as

$$
s_{R}[m, n]=\frac{r[m, n]}{r[m, n]+g[m, n]+b[m, n]}, \quad s_{B}[m, n]=\frac{b[m, n]}{r[m, n]+g[m, n]+b[m, n]}
$$

Define the color-histogram-distance between two images to be

$$
d\left(\overrightarrow{y_{1}}, \overrightarrow{y_{2}}\right)=\sqrt{\sum_{k_{R}=1}^{10} \sum_{k_{B}=1}^{10}\left|N_{1}\left[k_{R}, k_{B}\right]-N_{2}\left[k_{R}, k_{B}\right]\right|^{2}}
$$

where $N_{1}\left[k_{R}, k_{B}\right]$ and $N_{2}\left[k_{R}, k_{B}\right]$ are the color histograms resulting from images $\vec{y}_{1}[m, n]$ and $\overrightarrow{y_{2}}[m, n]$), respectively. Consider four images, two of constant color, and two with broad stripes:

$$
\begin{array}{cc}
\vec{y}_{1}[m, n]=\left[\begin{array}{c}
253 \\
1 \\
1
\end{array}\right], & \vec{y}_{2}[m, n]=\left[\begin{array}{c}
1 \\
1 \\
253
\end{array}\right] \\
\vec{y}_{3}[m, n]=\left\{\begin{array}{cc}
\vec{y}_{1}[m, n] & 0 \leq m \leq 4 \\
\vec{y}_{2}[m, n] & 5 \leq m \leq 9
\end{array},\right. & \vec{y}_{4}[m, n]= \begin{cases}\vec{y}_{2}[m, n] & 0 \leq m \leq 4 \\
\vec{y}_{1}[m, n] & 5 \leq m \leq 9\end{cases}
\end{array}
$$

Assume that all four are 10×10-pixel images (only defined for $0 \leq m \leq 9,0 \leq n \leq 9$). Find the numerical values of $d\left(\vec{y}_{1}, \vec{y}_{2}\right)$ and $d\left(\vec{y}_{3}, \vec{y}_{4}\right)$. For partial credit, in case your numerical computation is wrong, state which one you believe to be larger, and why.

