Problem 8.1

Consider a nearest neighbors classifier with just two training tokens:

\[
\vec{x}_0 = \begin{bmatrix} u_0 \\ v_0 \end{bmatrix}, \quad y_0 = -1, \quad \vec{x}_1 = \begin{bmatrix} u_1 \\ v_1 \end{bmatrix}, \quad y_1 = +1
\]

Prove that a nearest neighbor classifier, constructed from this training dataset, gives you a linear dichotomizer. Find the vector \(\vec{w} \) and the offset \(b \) in terms of the variables \(u_0, v_0, u_1, v_1 \).

Problem 8.2

Consider the following Bayesian classifier:

\[
p_Y(0) = \pi_0, \quad p_Y(1) = 1 - \pi_0
\]

Suppose that \(\mathcal{X} = (\mathbb{R}_+)^d \), that is, \(\vec{x} \) is a \(d \)-dimensional vector, all of whose elements are non-negative. Within this domain, the likelihoods are determined by the parameter vectors \(\vec{u} = [u_1, \ldots, u_d]^T \) and \(\vec{v} = [v_1, \ldots, v_d]^T \) as

\[
p_{X|Y}(\vec{x}|0) = c_0 e^{-\vec{u}^T \vec{x}}, \quad p_{X|Y}(\vec{x}|1) = c_1 e^{-\vec{v}^T \vec{x}}
\]

where \(c_0 = \prod_{k=1}^{d} u_k \) and \(c_1 = \prod_{k=1}^{d} v_k \) are normalizing constants. Show that this Bayesian classifier is actually a linear dichotomizer. Find \(\vec{w} \) and \(b \) in terms of \(\vec{u}, \vec{v}, \) and \(\pi_0 \).

Problem 8.3

A minimum-risk classifier is a generalized Bayesian classifier which, instead of minimizing the probability of error, minimizes some other type of expected loss function (“risk” means “expected loss”). For example, consider the following loss function:

\[
\mathcal{L}(y, \hat{y}) = \begin{cases}
0 & y = \hat{y} \\
1 & y = -1 \text{ but } \hat{y} = +1 \quad \text{(false alarm)} \\
C & y = +1 \text{ but } \hat{y} = -1 \quad \text{(miss)}
\end{cases}
\]

The minimum-risk classifier is defined by

\[
h(x) = \arg \min E [\mathcal{L}(y, h(x))]
\]

Consider the table \(p_{X,Y}(x, y) \) on lecture slide 21. Depending on the value of \(C \), the minimum-risk classification rule might result in up to five different classification functions \(h(x) \). List all five of the classification functions, and say for what values of \(C \) each one is a minimum-risk classifier.

Problem 8.4

The Bayes risk is defined by

\[
\mathcal{R}_{\text{Bayes}} = \min E [\mathcal{L}(y, h(x))]
\]

Find the Bayes risk, as a function of \(C \), for each of the five classifiers from problem 3.