Problem 5.1

Suppose \(s[n] = \sum_{m=0}^{P-1} S_m e^{jmn\omega_0} \), and \(s_f[n] = w[n]s[n + fK] \), where \(w[n] \) is the rectangular window,

\[
 w[n] = \begin{cases}
 1 & 0 \leq n \leq N - 1 \\
 0 & \text{else}
 \end{cases}
\]

Find \(S_0(e^{j\omega}) \), the DTFT of the zero'th frame, in terms of \(dsinc(\theta, L) = \frac{\sin(\theta L/2)}{L \sin(\theta/2)} \), \(S_m \), \(P \), and \(R = L/P \), which is the number of pitch periods per window. Notice that your answer doesn’t depend on \(R \) being an integer, or even a rational number.

Problem 5.2

Suppose \(s[n] = \sum_{m=0}^{P-1} S_m e^{jmn\omega_0} \), and \(s_f[n] = w[n]s[n + fK] \), where \(w[n] \) is any window. Notice that \(s[n + fK] = s[n] * \delta[n + fK] \), that is, shifting \(s[n] \) to the left in time is the same thing as convolving with an impulse at time \(n = -fK \). Using this observation, or using any other approach that you find convenient, find the DTFT of \(s_f[n] = s[n + fK]w[n] \) in terms of \(W(e^{j\omega}) \), \(P \), \(S_m \), and the fixed phase-shift terms \(\theta_{fm} = \frac{2\pi mfK}{P} \).

Problem 5.3

Suppose \(s[n] = \sum_{p=-\infty}^{\infty} h[n - pP] \). Find \(S_f(e^{j\omega}) \) in terms of \(\theta_{fm}, P, W(e^{j\omega}), \) and \(H(e^{j\omega}) \).