Consider a one-layer neural net with one-dimensional observations:

\[y = \sigma(a) \]
\[a = u_1 x + u_0 \]

where

\[\sigma(a) = \frac{1}{1 + e^{-a}} \]

Start with \(u_1 = 1, u_0 = 0 \), and the following training corpus:

\((x_i, \zeta_i) = \{(-4.97, 1), (-1.0, 0), (1.0, 1), (4.97, 0)\} \)

Where the training corpus error is defined to be

\[E = \frac{1}{4} \sum_{i=1}^{4} E_i, \quad E_i = \frac{1}{2} (y_i - \zeta_i)^2 \]

You may find it useful to know that \(\sigma(b) = (1 - \sigma(-b)) \), and that \(\sigma'(b) = \sigma'(-b) \). You may also find it useful to know that \(\sigma^2(-1) = 0.07, \sigma^2(4.97) = 0.99, \sigma(-1)\sigma'(-1) = 0.067, \sigma(4.97)\sigma'(4.97) = 0.134, \) and \(4.97\sigma(4.97)\sigma'(4.97) = 0.067 \).

1. Given the initial values \(u_1 = 1, u_0 = 0 \), what is the initial training corpus error?
2. Find at least one set of values \(u_1 \) and \(u_0 \) that has lower error than the initial error.
3. Prove that, in this case, batch training causes the network to converge to a sub-optimal set of network weights.
4. Suppose you implement SGD with replacement. “With replacement” means that you selecting \(i \in \{1, 2, 3, 4\} \) for each training iteration, without regard to what was chosen in previous training iterations. Normally, \(i \) would be selected at random, but for the purposes of this problem, suppose you could magically choose a sequence of training tokens, presented one at a time to the training algorithm, that would make the algorithm converge to the solution you named in part (b). Propose such a sequence.