Lecture 17 Sample Problems

Problem 17.1

Suppose you’re given a training database of 200 examples. Each example includes a two-dimensional real-valued feature vector \(\vec{x}_i \) and a two-dimensional one-hot label vector \(\vec{\zeta}_i \). As it turns out, though, all examples from class \(\vec{\zeta} = [1, 0] \) have the same \(\vec{x} \), and all examples from class \(\vec{\zeta} = [0, 1] \) have the same class:

\[
(\vec{x}_i, \vec{\zeta}_i) = \begin{cases}
(\begin{bmatrix} 2 \\ -2 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}) & 1 \leq i \leq 100 \\
(\begin{bmatrix} -2 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}) & 101 \leq i \leq 200
\end{cases}
\]

You want to train a one-layer neural net using a softmax output:

\[
y_{ki} = \frac{e^{a_{ki}}}{\sum_m e^{a_{mi}}} \quad \vec{a}_i = U\vec{x}_i
\]

Since both \(\vec{y} \) and \(\vec{x} \) are 2D vectors, \(U \) is a \(2 \times 2 \) matrix. Its coefficients are trained to minimize cross-entropy

\[
u_{kj} \leftarrow u_{kj} - \eta \frac{\partial E}{\partial u_{kj}}, \quad E = -\frac{1}{200} \sum_{i=1}^{200} \sum_{k=1}^2 \vec{\zeta}_{ki} \ln y_{ki}
\]

With initial values \(u_{kj} = 0 \). Find \(u_{kj} \) after one round of gradient-descent training, assuming \(\eta = 1 \). Notice that after one round of training, the training corpus is classified with 100% accuracy! Notice also that the second row of \(U \) is -1 times the first row—that will always be true for a two-class softmax. Why?

Problem 17.2

Suppose you’re given a training database of just 4 training examples. Each example includes a two-dimensional real-valued feature vector \(\vec{x}_i \) and a two-dimensional one-hot label vector \(\vec{\zeta}_i \):

\[
(\vec{x}_i, \vec{\zeta}_i) = \begin{cases}
(\begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}) & i = 1 \\
(\begin{bmatrix} -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}) & i = 2 \\
(\begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}) & i = 3 \\
(\begin{bmatrix} -1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}) & i = 4
\end{cases}
\]

You want to train a two-layer neural net using a softmax output and logistic hidden units:

\[
z_{li} = \frac{e^{b_{li}}}{\sum_m e^{b_{mi}}}, \quad \vec{b}_i = V\vec{y}_i
\]
\[y_{ki} = \sigma(a_{ki}), \quad \vec{a}_i = U \vec{x}_i \]

Suppose that \(U \) and \(V \) are initialized as all-zero matrices. Use forward propagation to compute \(\vec{y}_i \) and \(\vec{z}_i \) for each training token, then use back-propagation to compute \(\vec{\epsilon}_i \) and \(\vec{\delta}_i \) for each training token, then use the outer products to find

\[
V^{(1)} = V^{(0)} - \frac{1}{n} \sum_{i=1}^{n} \vec{\epsilon}_i \vec{y}_i^T, \quad U^{(1)} = U^{(0)} - \frac{1}{n} \sum_{i=1}^{n} \vec{\delta}_i \vec{x}_i^T
\]

Notice that, because of the symmetry of this problem, starting from an all-zero initialization will result in a neural net that never trains. In order to train this neural net, you would have to break the symmetry by starting with small random initial values in \(U \) and \(V \).