UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
 Department of Electrical and Computer Engineering

ECE 417 Multimedia Signal Processing

Fall 2017

EXAM 2 SOLUTIONS

Thursday, October 26, 2017

Problem 1 (10 points)

A speech signal can be modeled as an excitation passed through a filter, $s[n]=h[n] * e[n]$. A reasonable (very) simplified model of voiced speech might use

$$
e[n]=\delta[n]+\sum_{m=-\infty}^{\infty} \delta\left[n-m T_{0}\right], \quad h[n]=\left(A_{1} p_{1}^{n}+A_{1}^{*}\left(p_{1}^{*}\right)^{n}\right) u[n]
$$

where p_{1} is the complex first formant frequency, and A_{1} is some appropriate constant. For purposes of this problem, define the cepstrum to be the inverse DTFT of the log DTFT:

$$
\hat{s}[n]=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \ln S(\omega) e^{j \omega n} d \omega
$$

You are given the cepstrum of $h[n]$:

$$
\hat{h}[n]=\left(\frac{p_{1}^{n}}{n}+\frac{\left(p_{1}^{*}\right)^{n}}{n}\right) u[n]
$$

and you may assume that

$$
\ln \left(1+\frac{2 \pi}{T_{0}} \sum_{k=0}^{T_{0}-1} \delta\left(\omega-\frac{2 \pi k}{T_{0}}\right)\right) \approx \ln \left(\frac{2 \pi}{T_{0}}\right)+\sum_{k=0}^{T_{0}-1} \delta\left(\omega-\frac{2 \pi k}{T_{0}}\right)
$$

Under these assumptions, find the cepstrum $\hat{s}[n]$ of the speech signal, in terms of the parameters T_{0} and p_{1}.

Solution

$$
\hat{s}[n]=\left(\frac{p_{1}^{n}}{n}+\frac{\left(p_{1}^{*}\right)^{n}}{n}\right) u[n]+\ln \left(\frac{2 \pi}{T_{0}}\right) \delta[n]+\frac{T_{0}}{2 \pi} \sum_{m=\infty}^{\infty} \delta\left[n-m T_{0}\right]
$$

Problem 2 (10 points)

A speech signal, $x[n]$, has been sampled at F_{s} samples/second. Suppose the signal is only N samples long, so we can compute its N-sample DFT, $X[k]$. The mel spectrum is then defined to be

$$
\tilde{X}[m]= \begin{cases}\sum_{k=0}^{N / 2} W_{m}[k] \cdot|X[k]| & 1 \leq m \leq M \\ 0 & \text { otherwise }\end{cases}
$$

where the filters $W_{m}[k]$ are uniformly spaced in a mel-frequency scale. Suppose that the speech signal is known to be $x[n]=h[n] * e[n]$, where $e[n]$ has mel spectrum $\tilde{E}[m]$, and $h[n]$ has mel spectrum $\tilde{H}[m]$. Define the mel-frequency cepstral coefficients to be

$$
\tilde{x}[n]=\operatorname{DFT}^{-1}\{\ln (\tilde{X}[m]+\tilde{X}[2 M+2-m])\}
$$

where the DFT has a length of $N=2 M+2$. Prove that $\tilde{x}[n]$ is a symmetric real-valued sequence.

Solution

The mel-frequency samples at $\tilde{X}[0]$ and $\tilde{X}[M+1]$ are unspecified. If we assume that both of those samples are zero, then the IDFT formula

$$
\tilde{x}[n]=\frac{1}{N} \sum_{k=0}^{N-1} \ln (\tilde{X}[m]+\tilde{X}[2 M+2-m]) e^{j 2 \pi m n / N}
$$

simplifies to

$$
\tilde{x}[n]=\frac{2}{N} \sum_{k=1}^{M} \ln \tilde{X}[m] \cos \left(\frac{\pi m n}{M+1}\right)
$$

This is real and symmetric, as long as $\ln \tilde{X}[m]$ is real, which is true, for example, if $W_{m}[k]$ and $|X[k]|$ are both real non-negative quantities.

Problem 3 (10 points)

Three scalar random variables A, V, and Y are jointly distributed as

$$
\begin{equation*}
p_{Y \mid V}(y \mid v)=\frac{1}{3} C\left(y_{k}=y\right), \quad p_{A \mid Y}(a \mid y)=\mathcal{N}\left(a ; \mu_{y}, 1\right) \tag{1}
\end{equation*}
$$

where $\mathcal{N}\left(a ; \mu_{y}, 1\right)$ is a scalar Gaussian with unit variance, and with class-dependent means

$$
\begin{equation*}
\mu_{0}=-1, \quad \mu_{1}=1 \tag{2}
\end{equation*}
$$

The operator $C\left(y_{k}=y\right)$ is a nearest-neighbor count operator: it finds three training samples v_{k} with the three smallest values of $\left(v_{k}-v\right)^{2}$, then counts how many of those samples have the label y. The training samples are

$$
\begin{equation*}
\left\{v_{1}, \ldots, v_{9}\right\}=[-2,-1,0,1,2,3], \quad\left\{y_{1}, \ldots, y_{9}\right\}=[0,0,0,1,1,1] \tag{3}
\end{equation*}
$$

(a) Sketch $p_{Y \mid V}(1 \mid v)$ as a function of v.

Solution

$$
p_{Y \mid V}(y \mid v)= \begin{cases}0 & v<-\frac{1}{2} \\ \frac{1}{3} & -\frac{1}{2}<v<\frac{1}{2} \\ \frac{2}{3} & \frac{1}{2}<v<\frac{3}{2} \\ 1 & \frac{3}{2}<v\end{cases}
$$

(b) Based on Eqs. 1 through 3 on the previous page, design a classifier $\hat{y}(a, v)$ such that

$$
\hat{y}(a, v)=\arg \max _{y} \ln \left(p_{A \mid Y}(a \mid y) p_{Y \mid V}(y \mid v)\right)
$$

Draw a two-dimensional space whose axes are v and a; show the region $-5 \leq v, a \leq 5$. In the two-dimensional space, draw the decision boundary between the class $\hat{y}(a, v)=0$ and the class $\hat{y}(a, v)=1$.

Solution

The plot should show a boundary composed of vertical and horizontal line segments at $v=-\frac{1}{2}, a=-\frac{1}{2} \ln (2), v=\frac{1}{2}, a=\frac{1}{2} \ln (2)$, and $v=\frac{3}{2}$.

Problem 4 (10 points)

Suppose you have a scalar random variable X, with training examples $\left[x_{1}, x_{2}, x_{3}, x_{4}\right]=$ $[-1,0,1,2]$. You want to try to cluster these into two clusters. You have initial estimates of the cluster centroids, as $\mu_{0}=0, \mu_{1}=1$.
(a) Perform one iteration of K-means clustering: assign each token to a cluster, then recompute the new cluster centroids. What are the new cluster centroids?

Solution

$$
\mu_{0}=-\frac{1}{2}, \quad \mu_{1}=\frac{3}{2}
$$

(b) Assume that part (a) never happened. Instead, perform one iteration of EM training. You have initial parameter estimates $\mu_{0}=0, \mu_{1}=1, \sigma_{0}^{2}=\sigma_{1}^{2}=1$, and $c_{0}=c_{1}=0.5$. Perform one iteration of EM training. What are the new cluster centroids? Give numerical values for the new values of μ_{0} and μ_{1}; in order to do so, assume that the unit normal Gaussian pdf has the following values: $\mathcal{N}(0 ; 0,1) \approx \frac{2}{5}, \mathcal{N}(1 ; 0,1) \approx \frac{1}{4}, \mathcal{N}(2 ; 0,1) \approx \frac{1}{20}$, and $\mathcal{N}(x ; 0,1) \approx 0$ for $x \geq 3$. Note: since you didn't bring a calculator to this exam, feel free to leave your answer in the form of a sum of fractions.

Solution:

$$
\mu_{0}=-\frac{3}{52}, \quad \mu_{1}=\frac{55}{52}
$$

