UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Department of Electrical and Computer Engineering

ECE 417 Multimedia Signal Processing

Fall 2017

EXAM 3

Friday, December 15, 2017

- This is a CLOSED BOOK exam. You may use one sheet (front and back) of handwritten notes.
- No calculators are permitted. You need not simplify explicit numerical expressions.
- There are a total of 40 points in the exam. Each problem specifies its point total. Plan your work accordingly.
- You must SHOW YOUR WORK to get full credit.

Problem	Score
1	
2	
3	
4	
Total	

Name: \qquad
\qquad

Possibly Useful Formulas

Scaled Forward-Backward Algorithm

$$
\begin{aligned}
\tilde{\alpha}_{1}(i) & =\pi_{i} b_{i}\left(\vec{x}_{1}\right) \\
g_{t} & =\sum_{i=1}^{N} \tilde{\alpha}_{t}(i) \\
\hat{\alpha}_{t}(i) & =\frac{1}{g_{t}} \tilde{\alpha}_{t}(i) \\
\tilde{\alpha}_{t}(i) & =\sum_{j=1}^{N} \hat{\alpha}_{t-1}(j) a_{j i} b_{i}\left(\vec{x}_{t}\right) \\
\hat{\beta}_{T}(i) & =1 \\
\tilde{\beta}_{t}(i) & =\sum_{j=1}^{N} \hat{\beta}_{t+1}(j) a_{i j} b_{j}\left(\vec{x}_{t+1}\right) \\
\hat{\beta}_{t}(i) & =\frac{1}{g_{t+1}} \tilde{\beta}_{t}(i)
\end{aligned}
$$

Adaboost Assume $y_{i}, h_{j}\left(x_{i}\right) \in\{0,1\}$. For $t=1, \ldots, T$:

$$
\begin{aligned}
h_{t}^{*} & =\arg \min _{j} \sum_{i=1}^{n} w_{t, i}\left|h_{j}\left(x_{i}\right)-y_{i}\right| \\
\epsilon_{t} & =\sum_{i=1}^{n} w_{t, i}\left|h_{t}^{*}\left(x_{i}\right)-y_{i}\right| \\
\tilde{w}_{t+1, i} & = \begin{cases}\frac{\epsilon_{t}}{1-\epsilon_{t}} w_{t, i} & h_{t}^{*}\left(x_{i}\right)=y_{i} \\
w_{t, i} & \text { otherwise }\end{cases} \\
w_{t+i, i} & =\frac{\tilde{w}_{t+1, i}}{\sum_{j} \tilde{w}_{t+1, j}} \\
H(x) & =u\left(\sum_{t=1}^{T} \alpha_{t}\left(h_{t}^{*}(x)-\frac{1}{2}\right)\right) \\
\alpha_{t} & =\log \frac{1-\epsilon_{t}}{\epsilon_{t}}
\end{aligned}
$$

Affine Transforms and Barycentric Coordinates

$$
\begin{aligned}
\vec{x}_{0} & =\left[\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}\right] \vec{\lambda} \\
\vec{u}_{i} & =\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
0 & 0 & 1
\end{array}\right] \vec{x}_{i} \\
\vec{u}_{0} & =\left[\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}\right] \vec{\lambda}
\end{aligned}
$$

Problem 1 (10 points)

A particular two-layer neural network accepts a two-dimensional input vector $\vec{x}=\left[x_{1}, x_{2}, 1\right]^{T}$, and generates an output $z=h\left(\vec{v}^{T} g(U \vec{x})\right.$). Choose network weights \vec{v} and U, and element-wise scalar nonlinearities $h()$ and $g()$, that will generate the following output:

$$
z= \begin{cases}1 & \left|x_{1}\right|<2 \text { and }\left|x_{2}\right|<2 \\ -1 & \text { otherwise }\end{cases}
$$

\qquad

Problem 2 (10 points)

A reference image $I_{0}(u, v)$ has the following pixel values:

$$
I_{0}(u, v)=1+(-1)^{u+v}
$$

The test image $I_{1}(x, y)$ is created by piece-wise affine transformation of the pixel locations in $I_{0}(u, v)$. In particular, the triangle U in $I_{0}(u, v)$ is moved to the triangle X in $I_{1}(x, y)$, where

$$
U=\left[\begin{array}{ccc}
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3} \\
1 & 1 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 2 \\
0 & 2 & 3 \\
1 & 1 & 1
\end{array}\right], \quad X=\left[\begin{array}{ccc}
x_{1} & x_{2} & x_{3} \\
y_{1} & y_{2} & y_{3} \\
1 & 1 & 1
\end{array}\right]=\left[\begin{array}{lll}
2 & 4 & 3 \\
1 & 1 & 3 \\
1 & 1 & 1
\end{array}\right]
$$

(a) Find the reference coordinate $\vec{u}=[u, v, 1]^{T}$ that corresponds to the test coordinate $\vec{x}=$ $[3,2,1]^{T}$.
(b) Use bilinear interpolation to find the value of the test pixel $I_{1}(3,2)$.
\qquad

Problem 3 (10 points)

A bimodal HMM uses a common state sequence, $Q=\left[q_{1}, \ldots, q_{T}\right]$, to explain two different observation sequences $X=\left[\vec{x}_{1}, \ldots, \vec{x}_{T}\right]$ and $Y=\left[\vec{y}_{1}, \ldots, \vec{y}_{T}\right]$. The HMM is parameterized by

$$
\begin{aligned}
\pi_{i} & =p\left(q_{1}=i\right) \\
a_{i j} & =p\left(q_{t}=j \mid q_{t-1}=i\right) \\
b_{j}\left(\vec{x}_{t}\right) & =p_{X}\left(\vec{x}_{t} \mid q_{t}=j\right) \\
c_{j}\left(\overrightarrow{y_{t}}\right) & =p_{Y}\left(\overrightarrow{y_{t}} \mid q_{t}=j\right)
\end{aligned}
$$

Define

$$
\begin{aligned}
\alpha_{t}(i) & =p\left(\vec{x}_{1}, \vec{y}_{1}, \ldots, \vec{x}_{t}, \overrightarrow{y_{t}}, q_{t}=i\right) \\
\beta_{t}(i) & =p\left(\vec{x}_{t+1}, \vec{y}_{t+1}, \ldots, \vec{x}_{T}, \vec{y}_{T} \mid q_{t}=i\right)
\end{aligned}
$$

(a) Specify initialization formulas for $\alpha_{1}(i)$ and $\beta_{T}(i)$ in terms of $\pi_{i}, a_{i j}, b_{j}\left(\vec{x}_{t}\right)$, and $c_{j}\left(\vec{x}_{t}\right)$.
(b) Specify iteration formulas for $\alpha_{t}(i)$ and $\beta_{t}(i)$ in terms of $\pi_{i}, a_{i j}, b_{j}\left(\vec{x}_{t}\right), c_{j}\left(\vec{x}_{t}\right), \alpha_{t-1}(j)$, and $\beta_{t+1}(j)$.

Problem 4 (10 points)

Suppose that you have a training database with three training vectors \vec{x}_{1}, \vec{x}_{2}, and \vec{x}_{3} whose correct labels are y_{1}, y_{2}, and y_{3}. You also have a set of three weak classifiers h_{1}, h_{2}, and h_{3}, each of which is right for exactly two of the three training tokens, as follows:

$$
h_{t}\left(\vec{x}_{i}\right)= \begin{cases}y_{i} & i \neq t \\ \text { incorrect } & i=t\end{cases}
$$

Adaboost begins with the weights $w_{1, i}=\frac{1}{3}$, and runs for three iterations, resulting in the strong classifier

$$
H(\vec{x})=\sum_{t=1}^{3} \alpha_{t} h_{t}(\vec{x})
$$

You may assume that the weak classifiers are selected in order: h_{1} is selected in the first iteration of Adaboost, h_{2} in the second iteration, and h_{3} in the third iteration. Find α_{1}, α_{2}, and α_{3}.

