Problem 1 (10 points)

(a) $D(\vec{x}, \vec{y})$ is not positive definite, e.g., consider $\vec{x}=[1,0,0]^{T}, \vec{y}=[0,1,0]^{T}$.
(b) Consider the numbers

$$
\begin{aligned}
& a_{1}=\left(x_{1}-y_{1}\right)^{2}-\left(x_{1}-z_{1}\right)^{2} \\
& a_{2}=\left(x_{2}-y_{2}\right)^{2}-\left(x_{2}-z_{2}\right)^{2} \\
& a_{3}=\left(x_{3}-y_{3}\right)^{2}-\left(x_{3}-z_{3}\right)^{2}
\end{aligned}
$$

It is necessary that

$$
\frac{a_{1}}{\sigma_{1}^{2}}+\frac{a_{2}}{\sigma_{2}^{2}}+\frac{a_{3}}{\sigma_{3}^{2}}>0
$$

If at least one of the a_{k} is positive, then we can choose

$$
\sigma_{k}^{2}= \begin{cases}100 a_{k} & a_{k}>0 \\ 1 & a_{k}=0 \\ -0.01 a_{k} & a_{k}<0\end{cases}
$$

If all of the a_{k} are negative, then there's no positive-definite Σ that will solve the problem. The problem statement didn't specify that Σ has to be positive-definite, though, so we could just choose

$$
\sigma_{k}^{2}=\operatorname{sign}\left(a_{k}\right)
$$

Problem 2 (10 points)

(a) The sketch should show the line $x_{1}=0$.
(b) $1-\Phi(2)$

Problem 3 (10 points)

(a) The sketch should show an ellipse centered at the origin, with its axes at 45 degrees relative to the main axes, passing through the points $(\sqrt{2}, \sqrt{2}),(-\sqrt{2},-\sqrt{2}),\left(\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right)$, and $\left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$.
(b) $[4 \sqrt{2}, 0]^{T}$.

Problem 4 (10 points)

(a) The sketch should show an empty plus-sign, the figure $\min \left(\left|x_{1}\right|,\left|x_{2}\right|\right)=0.5$.
(b) The solution can be any value of η in the range $\frac{1}{2} e^{1 / 2}>\eta>\frac{1}{2} e^{1 / 4}$.

