Problem 1 (10 points)

- (a) $D(\vec{x}, \vec{y})$ is not positive definite, e.g., consider $\vec{x} = [1, 0, 0]^T$, $\vec{y} = [0, 1, 0]^T$.
- (b) Consider the numbers

$$a_1 = (x_1 - y_1)^2 - (x_1 - z_1)^2$$

$$a_2 = (x_2 - y_2)^2 - (x_2 - z_2)^2$$

$$a_3 = (x_3 - y_3)^2 - (x_3 - z_3)^2$$

It is necessary that

$$\frac{a_1}{\sigma_1^2} + \frac{a_2}{\sigma_2^2} + \frac{a_3}{\sigma_3^2} > 0$$

If at least one of the a_k is positive, then we can choose

$$\sigma_k^2 = \begin{cases} 100a_k & a_k > 0\\ 1 & a_k = 0\\ -0.01a_k & a_k < 0 \end{cases}$$

If all of the a_k are negative, then there's no positive-definite Σ that will solve the problem. The problem statement didn't specify that Σ has to be positive-definite, though, so we could just choose

$$\sigma_k^2 = \operatorname{sign}(a_k)$$

Problem 2 (10 points)

- (a) The sketch should show the line $x_1 = 0$.
- (b) $1 \Phi(2)$

Problem 3 (10 points)

- (a) The sketch should show an ellipse centered at the origin, with its axes at 45 degrees relative to the main axes, passing through the points $(\sqrt{2}, \sqrt{2}), (-\sqrt{2}, -\sqrt{2}), (\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}),$ and $(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}).$
- (b) $[4\sqrt{2}, 0]^T$.

Problem 4 (10 points)

- (a) The sketch should show an empty plus-sign, the figure $\min(|x_1|, |x_2|) = 0.5$.
- (b) The solution can be any value of η in the range $\frac{1}{2}e^{1/2} > \eta > \frac{1}{2}e^{1/4}$.