UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Department of Electrical and Computer Engineering

ECE 417 Multimedia Signal Processing

Fall 2017

CONFLICT EXAM 2

Monday, October 30, 2017

- This is a CLOSED BOOK exam. You may use one sheet (front and back) of handwritten notes.
- No calculators are permitted. You need not simplify explicit numerical expressions.
- There are a total of 40 points in the exam. Each problem specifies its point total. Plan your work accordingly.
- You must SHOW YOUR WORK to get full credit.

Problem	Score
1	
2	
3	
4	
Total	

Name: \qquad
\qquad

Possibly Useful Formulas

Fourier Transforms

$$
\begin{gathered}
\text { DTFT: } \quad x[n]=\frac{1}{2 \pi} \int_{-\pi}^{\pi} X(\omega) e^{j \omega n} d \omega \leftrightarrow X(\omega)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n} \\
\text { DFT: } \quad x[n]=\frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j 2 \pi k n / N} \leftrightarrow X[k]=\sum_{n=0}^{N-1} x[n] e^{-j 2 \pi k n / N} \\
h[n]=\frac{\sin \omega_{c} n}{\pi n} \leftrightarrow H(\omega)= \begin{cases}1 & |\omega|<\omega_{c} \\
0 & \text { otherwise }\end{cases} \\
u[n]-u[n-N] \leftrightarrow e^{-j \frac{\omega(N-1)}{2} \frac{\sin (\omega N / 2)}{\sin (\omega / 2)}} \\
\delta[n] \leftrightarrow 1 \\
e^{j \alpha n} \leftrightarrow 2 \pi \delta(\omega-\alpha) \\
\sum_{\ell=-\infty}^{\infty} \delta\left[n-\ell T_{0}\right] \leftrightarrow\left(\frac{2 \pi}{T_{0}}\right)^{T_{0}-1} \delta\left(\omega-\frac{2 \pi k}{T_{0}}\right)
\end{gathered}
$$

Gaussians, Mahalanobis, and PCA

$$
\begin{gathered}
\mathcal{N}(\vec{x} ; \vec{\mu}, \Sigma)=\frac{1}{(2 \pi)^{D / 2}|\Sigma|^{1 / 2}} e^{-\frac{1}{2}(\vec{x}-\vec{\mu})^{T} \Sigma^{-1}(\vec{x}-\vec{\mu})} \\
\Sigma=U \Lambda U^{T} \\
\Sigma^{-1}=U \Lambda^{-1} U^{T} \\
U^{T} \Sigma U=\Lambda \\
U^{T} U=I \\
d_{\Sigma}^{2}(\vec{x}, \vec{\mu})=(\vec{x}-\vec{\mu})^{T} \Sigma^{-1}(\vec{x}-\vec{\mu})=\vec{y}^{T} \Lambda^{-1} \vec{y} \\
\vec{y}=U^{T}(\vec{x}-\vec{\mu})
\end{gathered}
$$

\qquad

Problem 1 (10 points)

Suppose that a particular speech signal has the following log-magnitude DTFT:

$$
\log |S(\omega)|=(62+6 \cos \omega)+\frac{2 \pi}{10} \sum_{k=0}^{9} \delta\left(\omega-\frac{2 \pi k}{10}\right)
$$

Suppose that the spectrum is liftered as follows:

$$
\hat{s}[n]=\operatorname{DTFT}^{-1}\{\log |S(\omega)|\}, \quad \hat{y}[n]=w[n] \hat{s}[n], \quad \log |Y(\omega)|=\operatorname{DTFT}\{\hat{y}[n]\}
$$

Where $w[n]=1$ for $|n| \leq 2$, and 0 otherwise. Find $\log |Y(\omega)|$.

Problem 2 (10 points)

Recall that the IDFT is defined to be

$$
x[n]=\frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j 2 \pi k n / N}
$$

(a) For what types of inputs, $X[k]$, can the $e^{j 2 \pi k n / N}$ term be replaced by $\cos (2 \pi k n / N)$ without changing the output?
(b) Specify a further condition on $X[k]$ that will result in $x[n]$ being real valued, and demonstrate that $X[k]=\ln |S[k]|$ satisfies this condition, where $S[k]$ is the DFT of any realvalued signal $s[n]$.
\qquad

Problem 3 (10 points)

A scalar random variable X is distributed as

$$
\begin{equation*}
p_{X \mid Y}(x \mid y)=\sum_{k=0}^{1} c_{y k} \mathcal{N}\left(x ; \mu_{y k}, 1\right) \tag{1}
\end{equation*}
$$

where $\mathcal{N}\left(x ; \mu_{y k}, 1\right)$ is a scalar Gaussian with unit variance, and with class-dependent clusterdependent means

$$
\begin{equation*}
\mu_{00}=-1, \quad \mu_{01}=1, \quad \mu_{10}=0, \quad \mu_{11}=2 \tag{2}
\end{equation*}
$$

and mixture weights

$$
\begin{equation*}
c_{00}=\frac{1}{2}, \quad c_{01}=\frac{1}{2}, \quad c_{10}=1, \quad c_{11}=0 \tag{3}
\end{equation*}
$$

(a) Based on Eqs. 1 through 3, design a classifier $\hat{y}(x)$ such that

$$
\hat{y}(x)=\arg \max _{y} \ln p_{X \mid Y}(x \mid y)
$$

For which values of x is $\hat{y}(x)=1$? Hint: you may find it useful to apply the approximation $\ln \left(e^{a}+e^{b}\right) \approx \max (a, b)$.
(b) Suppose that you are given the following training data, all of which comes from class $y=0$:

$$
\begin{equation*}
\left\{a_{1}, a_{2}, a_{3}\right\}=\{-2,-1,1\} \tag{4}
\end{equation*}
$$

Use the expectation-maximization algorithm to re-estimate the two Gaussian mean parameters μ_{00} and μ_{01}. Give numerical values for the new values of μ_{00} and $\mu_{01} ;$ in order to do so, assume that the unit normal Gaussian pdf has the following values: $\mathcal{N}(0 ; 0,1) \approx \frac{2}{5}$, $\mathcal{N}(1 ; 0,1) \approx \frac{1}{4}, \mathcal{N}(2 ; 0,1) \approx \frac{1}{20}$, and $\mathcal{N}(x ; 0,1) \approx 0$ for $x \geq 3$. Note: since you didn't bring a calculator to this exam, feel free to leave your answer in the form of a fraction of fractions.
\qquad

Problem 4 (10 points)

Suppose you have a scalar random variable X, distributed according to a GMM with unit variance:

$$
p_{X}(x)=\sum_{k=0}^{1} c_{k} \mathcal{N}\left(x ; \mu_{k}, \sigma^{2}=1\right)
$$

Remember that the γ-probability is defined as:

$$
\gamma_{k}(x)=\frac{c_{k} \mathcal{N}\left(x ; \mu_{k}, 1\right)}{\sum_{\ell=0}^{1} c_{\ell} \mathcal{N}\left(x ; \mu_{\ell}, 1\right)}
$$

Demonstrate that $\gamma_{1}(x)$ has the following form, and find the values of a and τ in terms of μ_{0}, μ_{1}, c_{0}, and c_{1} :

$$
\gamma_{1}(x)=\frac{1}{1+e^{-a(x-\tau)}}
$$

