UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Department of Electrical and Computer Engineering

ECE 417 Multimedia Signal Processing

Fall 2017

CONFLICT EXAM 1

Tuesday, October 3, 2017

- This is a CLOSED BOOK exam. You may use one sheet (front and back) of handwritten notes.
- No calculators are permitted. You need not simplify explicit numerical expressions.
- There are a total of 40 points in the exam. Each problem specifies its point total. Plan your work accordingly.
- You must SHOW YOUR WORK to get full credit.

Problem	Score
1	
2	
3	
4	
Total	

Name: \qquad
\qquad

Possibly Useful Formulas

Minkowski Norm

$$
\|\vec{x}-\vec{\mu}\|_{p}=\left(\left|x_{1}-\mu_{1}\right|^{p}+\ldots+\left|x_{D}-\mu_{D}\right|^{p}\right)^{1 / p}
$$

Gaussians

$$
\begin{aligned}
& \mathcal{N}(\vec{x} ; \vec{\mu}, \Sigma)=\frac{1}{(2 \pi)^{D / 2}|\Sigma|^{1 / 2}} e^{-\frac{1}{2}(\vec{x}-\vec{\mu})^{T} \Sigma^{-1}(\vec{x}-\vec{\mu})} \\
& \Sigma=U \Lambda U^{T} \\
& \Sigma^{-1}=U \Lambda^{-1} U^{T} \\
& U^{T} \Sigma U=\Lambda \\
& U^{T} U=I
\end{aligned}
$$

Mahalanobis Distance and PCA

$$
\begin{gathered}
d_{\Sigma}^{2}(\vec{x}, \vec{\mu})=(\vec{x}-\vec{\mu})^{T} \Sigma^{-1}(\vec{x}-\vec{\mu})=\vec{y}^{T} \Lambda^{-1} \vec{y} \\
\vec{y}=U^{T}(\vec{x}-\vec{\mu})
\end{gathered}
$$

Bayesian Classifier

$$
\hat{y}=\arg \max p_{Y \mid \vec{X}}(y \mid \vec{x})
$$

\qquad

Problem 1 (10 points)

Suppose you have a dataset including the vectors

$$
\vec{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right], \quad \vec{y}=\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right], \quad \vec{z}=\left[\begin{array}{l}
z_{1} \\
z_{2} \\
z_{3}
\end{array}\right]
$$

(a) Consider the following function $D(\vec{x}, \vec{y})$. Is it a distance? Why or why not?

$$
D(\vec{x}, \vec{y})=\left|x_{1}+x_{2}+x_{3}-y_{1}-y_{2}-y_{3}\right|
$$

(b) Find a diagonal matrix Σ such that $d_{\Sigma}^{2}(\vec{x}, \vec{y})>d_{\Sigma}^{2}(\vec{x}, \vec{z})$. Express your answer in terms of the variables $x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}, z_{1}, z_{2}, z_{3}$.
\qquad

Problem 2 (10 points)

Define $\Phi(z)$ as follows:

$$
\Phi(z)=\int_{-\infty}^{z} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} u^{2}} d u
$$

Suppose $\vec{X}=\left[X_{1}, X_{2}\right]^{T}$ is a Gaussian random vector with mean and covariance given by

$$
\vec{\mu}=\left[\begin{array}{l}
0 \\
2
\end{array}\right], \quad \Sigma=\left[\begin{array}{ll}
1 & 0 \\
0 & 4
\end{array}\right]
$$

(a) Define $f_{\vec{X}}(\vec{x})$, to be the pdf of \vec{X} evaluated at $\vec{x}=\left[x_{1}, x_{2}\right]^{T}$. Sketch, on the (x_{1}, x_{2}) plane, the set of points such that

$$
f_{\vec{X}}(\vec{x})=\frac{1}{4 \pi} e^{-\frac{1}{8}\left(x_{2}-2\right)^{2}}
$$

(b) In terms of $\Phi(z)$, find the probability $\operatorname{Pr}\left\{2<X_{1}\right\}$.
\qquad

Problem 3 (10 points)

Suppose that a particular covariance matrix Σ has the following eigenvector matrix, U, and eigenvalue matrix, Λ :

$$
U=\frac{\sqrt{2}}{2}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right], \quad \Lambda=\left[\begin{array}{ll}
4 & 0 \\
0 & 1
\end{array}\right]
$$

Let $\vec{y}(\vec{x})=\left[\begin{array}{l}y_{1}(\vec{x}) \\ y_{2}(\vec{x})\end{array}\right]=U^{T} \vec{x}$ be the principal components of a vector space \vec{x}.
(a) Plot the set of vectors \vec{x} such that $\vec{x}^{T} \Sigma^{-1} \vec{x}=1$
(b) Find the principal component representation of the following vector:

$$
\vec{x}-\vec{\mu}=\left[\begin{array}{l}
5 \\
5
\end{array}\right]-\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
4 \\
4
\end{array}\right]
$$

\qquad

Problem 4 (10 points)

Suppose that, for a particular classification problem, you have the following nine data points \vec{x}_{n} and their labels y_{n} :

$$
X=\left[\begin{array}{ccccccccc}
-1 & -1 & -1 & 0 & 0 & 0 & 1 & 1 & 1 \tag{1}\\
-1 & 0 & 1 & -1 & 0 & 1 & -1 & 0 & 1
\end{array}\right], \quad Y=[0,1,0,1,1,1,0,1,0]
$$

(a) Plot the boundaries of the nearest-neighbor classifier, for the region $-2 \leq x_{1} \leq 2,-2 \leq$ $x_{2} \leq 2$.
(b) Suppose now that $f_{\vec{X} \mid Y}(\vec{x} \mid 0)$ and $f_{\vec{X} \mid Y}(\vec{x} \mid 1)$ are both zero-mean Gaussian pdfs, with the covariance matrices Σ_{0} and Σ_{1} respectfully, where

$$
\Sigma_{0}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad \Sigma_{1}=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]
$$

Define η to be the odds ratio, $\eta=p_{Y}(0) / p_{Y}(1)$. Find a value of η such that a Bayesian classifier correctly labels all of the training tokens given in Eq. (1).

