ECE 417 Fall 2018 Lecture 18: ConvNets

Mark Hasegawa-Johnson

University of Illinois

October 25, 2018
Outline

1. Matched Filters
2. The Feature Design Problem in Computer Vision
3. Convolutional Neural Networks
4. Training a Convolutional Neural Network using Pooled Back-Propagation
The Matched Filter Problem

Suppose

- $v[n] \sim \mathcal{N}(0, 1)$ is Gaussian white noise.
- There are two possible hypotheses:
 - $H_0 : x[n] = v[n]$, or
 - $H_1 : x[n] = s[n] + v[n]$, for some known signal $s[n]$.
- Your task: find out if H_1 or H_0 is true.
Solution of the Matched Filter Problem

\[h[n] = s[-n], \text{ the “matched filter”} \]

\[y[n] = h[n] \ast x[n] = \sum_{m=-\infty}^{\infty} x[m]s[m - n] = r_{xs}[n] \]

... then it can be shown that...

\[y[0] = \begin{cases} \|s\|^2 + \nu & H_1 \\ \nu & H_0 \end{cases} \]

where \(\nu \sim \mathcal{N}(0, \|s\|^2) \) and \(\|s\|^2 = \sum_n s^2[n] \).
Solution of the Matched Filter Problem

So the Bayes-optimal classifier chooses some threshold (maybe $\|s\|^2/2$), and does this:

$$x[n] \rightarrow h[n] = s[-n] \rightarrow y[n] \rightarrow \begin{cases}
 y[0] > \text{threshold} : & H_1 \\
 y[0] < \text{threshold} : & H_0
\end{cases}$$

Why it works:

- Convolving with $s[-n]$ is just like correlating with $s[n]$.
- The signal that correlates most strongly with $s[n]$ is $s[n]$.
1. Matched Filters

2. The Feature Design Problem in Computer Vision

3. Convolutional Neural Networks

4. Training a Convolutional Neural Network using Pooled Back-Propagation
The Feature Design Problem in Computer Vision

PROBLEM: Is there a bicycle in this image?
SOLUTION as of 2001 (Burl, Weber and Perona): (1) Use matched filters to find recognizable parts, e.g., handlebars, wheels, (2) If they occur in plausible geometry, call it a bicycle.
WHY THE 2001 SOLUTION FAILS TO SCALE: How can you design matched filters for all of the parts of every type of object that you want to recognize?
Outline

1 Matched Filters

2 The Feature Design Problem in Computer Vision

3 Convolutional Neural Networks

4 Training a Convolutional Neural Network using Pooled Back-Propagation
ConvNets: Key Idea

KEY IDEA:
- Convolutional layers learn the features,
- Output layer learns a linear classifier.
Input to the ConvNet

\[x[n_1, n_2, j] = \text{image pixel in row } n_1, \text{ column } n_2, \text{ color } j. \]
Hidden Layers in a ConvNet

- **CONVOLUTIONAL LAYER**: \(a[n_1, n_2, k] = \text{conv layer, pixel } n_1, n_2, \text{ channel } k \).
- **POOLING LAYER**: \(y[n_1, n_2, k] = \text{pooling layer, pixel } n_1, n_2, \text{ channel } k \).
ConvNets: Convolutional Layer

\[a[n_1, n_2, k] = u[n_1, n_2, j, k] \ast x[n_1, n_2, j] \]

- \(u[:, :, :, k] \) is the \(k^{th} \) filter
- \(a[:, :, k] \) is the \(k^{th} \) channel
- The per-channel 2D convolution is defined as:

\[
u[n_1, n_2, j, k] \ast x[n_1, n_2, j] \equiv \sum_j \sum_{m_1} \sum_{m_2} u[n_1 - m_1, n_2 - m_2, j, k] \times x[m_1, m_2, j]\]
ConvNets: Max-Pooling Layer

\[y[n_1, n_2, k] = \max_{(m_1, m_2) \in A(n_1, n_2)} \max(0, a[m_1, m_2, k]) \]

- \(M \) is the max-pooling stride
- Finds the “maximum activation” of the \(k^{th} \) filter within the \((n_1, n_2)^{th} \) receptive field, which is defined as:

\[
A(n_1, n_2) = \left\{ (m_1, m_2) : \\
\begin{aligned}
&n_1 M \leq m_1 < (n_1 + 1)M, \\
&n_2 M \leq m_2 < (n_2 + 1)M
\end{aligned}
\right\}
\]
We can “vectorize” $y[n_1, n_2, k]$ by just re-shaping it into a vector \vec{y}. For example, if the size of the image is $N_1 \times N_2 \times K$, then we could define \vec{y} as

$$y_{kN_1N_2+n_1N_2+n_2} = y[n_1, n_2, k]$$

Then the output layer is the classifier:

$$\vec{z} = \text{softmax}(\vec{b}) = \text{softmax}(V\vec{y})$$

... and then we define error just as in any other neural net, e.g., cross-entropy, or mean-squared error.
Outline

1. Matched Filters
2. The Feature Design Problem in Computer Vision
3. Convolutional Neural Networks
4. Training a Convolutional Neural Network using Pooled Back-Propagation
The output layer is trained just like in a regular neural net. For training token \tilde{x}_i, you first find \tilde{a}_i, then \tilde{y}_i, then \tilde{b}_i, then \tilde{z}_i, then E_i, then

$$
\epsilon_{\ell i} = \frac{\partial E_i}{\partial b_{\ell i}}
$$

$$
\frac{\partial E_i}{\partial V} = \tilde{e}_i \tilde{y}_i^T
$$

$$
V \leftarrow V - \frac{\eta}{n} \sum_{i=1}^{n} \tilde{e}_i \tilde{y}_i^T
$$
In order to train $u[m_1, m_2, j, k]$, we need to back-propagate the error from the output layer (ϵ_{ℓ_i}) to the convolutional layer:

$$\frac{\partial E_i}{\partial u[m_1, m_2, j, k]}$$
Training the Convolutional Layer: Chain Rule

Chain rule:

\[
\frac{\partial E_i}{\partial u[m_1, m_2, j, k]} = \sum_{n_1} \sum_{n_2} \left(\frac{\partial E_i}{\partial a_i[n_1, n_2, k]} \right) \left(\frac{\partial a_i[n_1, n_2, k]}{\partial u[m_1, m_2, j, k]} \right)
\]
Training the Convolutional Layer: Forward-Prop

Chain rule:

\[
\frac{\partial E_i}{\partial u[m_1, m_2, j, k]} = \sum_{n_1} \sum_{n_2} \left(\frac{\partial E_i}{\partial a_i[n_1, n_2, k]} \right) \left(\frac{\partial a_i[n_1, n_2, k]}{\partial u[m_1, m_2, j, k]} \right)
\]

First, this part:

\[
a_i[n_1, n_2, k] = \sum_{m_1} \sum_{m_2} u[m_1, m_2, j, k] x_i[n_1 - m_1, n_2 - m_2, j]
\]

\[
\frac{\partial a_i[n_1, n_2, k]}{\partial u[m_1, m_2, j, k]} = x_i[n_1 - m_1, n_2 - m_2, j]
\]
Training the Convolutional Layer: Back-Prop

Chain rule:

\[
\frac{\partial E_i}{\partial u[m_1,m_2,j,k]} = \sum_{n_1} \sum_{n_2} \left(\frac{\partial E_i}{\partial a_i[n_1,n_2,k]} \right) \left(\frac{\partial a_i[n_1,n_2,k]}{\partial u[m_1,m_2,j,k]} \right) \\
= \sum_{n_1} \sum_{n_2} \delta_i[n_1,n_2,k] x_i[n_1 - m_1, n_2 - m_2, j] \\
= \delta_i[m_1,m_2,k] \ast x_i[m_1,m_2,j]
\]

Where we’ve now defined the back-prop error term as:

\[
\delta_i[n_1,n_2,k] = \frac{\partial E_i}{\partial a_i[n_1,n_2,k]}
\]
Training the Convolutional Layer: Back-Prop

\[
\delta_i[n_1, n_2, k] = \frac{\partial E_i}{\partial a_i[n_1, n_2, k]} = \sum_\ell \sum_{o_1} \sum_{o_2} \left(\frac{\partial E_i}{\partial b_{\ell i}} \right) \left(\frac{\partial b_{\ell i}}{\partial y_i[o_1, o_2, k]} \right) \left(\frac{\partial y_i[o_1, o_2, k]}{\partial a_i[n_1, n_2, k]} \right)
\]

\[
= \begin{cases}
\sum_\ell \mathcal{E}_{\ell i} v_{\ell, k N_1 N_2 + o_1 N_2 + o_2} & \text{if } (n_1, n_2) = \text{argmax}_{(p_1, p_2) \in A(o_1, o_2)} a_i[p_1, p_2, k] \\
0 & \text{otherwise}
\end{cases}
\]

That last condition just says that we back-prop only to the hidden nodes \(a[n_1, n_2, k]\) that survive max-pooling, not to any others. And to make the notation easier to remember, we can write

\[
\tilde{\delta}_i = V^T \bar{\epsilon}_i |_{(n_1, n_2)}
\]
Training a ConvNet: Putting it all together

\[
\frac{\partial E_i}{\partial V} = \vec{\epsilon}_i \vec{y}_i^T
\]

\[
\frac{\partial E_i}{\partial u[m_1, m_2, j, k]} = \delta_i[m_1, m_2, k] \ast x_i[m_1, m_2, j]
\]

...where ...

\[
\epsilon_{\ell i} = \frac{\partial E_i}{\partial b_{\ell i}}
\]

\[
\delta_i[n_1, n_2, k] = V^T \bar{\vec{\epsilon}}_i|_{(n_1, n_2)}
\]