ECE 417 Lecture 8: Speech Production

Mark Hasegawa-Johnson, 9/2017
Speech
(Slide: Scharenborg, 2017)

• Specific to humans

• Allows us to convey information very fast

• Central role in many other language-related processes

• One of the most complex skills humans perform:
 • https://www.youtube.com/watch?v=DcNMCB-Gsn8
 • https://www.youtube.com/watch?v=KtN-FCOeWjl
Evolution of the vocal tract
(Slide: Scharenborg, 2017)

- Lowering of the tongue into the pharynx → lowering of the larynx
- Lengthening of the neck
- At the cost of an increase in the risk of choking on food

- Neanderthals were not capable of human speech
- Modern human vocal tract: since 50,000 years
The anatomy and physiology of speech
(Slide: Scharenborg, 2017)

Vocal tract
• Area between vocal cords and lips
• Pharynx + nasal cavity
 + oral cavity

and lungs
3 steps to produce sounds
(Slide: Scharenborg, 2017)

step 3: articulation =
distortion of air
→ time-varying formant-frequency pattern
= speech

step 2: phonation

step 1: initiation
The Source-Filter Model of Speech Production
(Chiba & Kajiyama, 1940)

- **Sources:** there are only three, all of them have wideband spectrum
 - Voicing: vibration of the vocal folds, same type of aerodynamic mechanism as a flag flapping in the wind.
 - Frication or Aspiration: turbulence created when air passes through a narrow aperture
 - Burst: the “pop” that occurs when high air pressure is suddenly released

- **Filter:**
 - Vocal tract = the air cavity between glottis and lips
 - Just like a flute or a shower stall, it has resonances
 - The excitation has energy at all frequencies; excitation at the resonant frequencies is enhanced
3 steps to produce sounds

step 3: *articulation* =
distortion of air
→ time-varying formant-frequency pattern
= speech

step 2: *phonation*

step 1: *initiation*
The Source-Filter Model of Speech Production

A picture from Martin Rothenberg’s website

THE SOURCE-FILTER MODEL FOR VOICE PRODUCTION

GLOTTAL AIRFLOW → VOCAL TRACT → RADIATED ACOUSTIC PRESSURE

Possible Assumptions

LINEARITY — The vocal tract is a linear acoustic system.

INDEPENDENCE — The properties of the glottal voice source and the supraglottal vocal tract are not dependent.
The Source-Filter Model

- The speech signal, $s(t)$, is created by convolving (*) an excitation signal $e(t)$ through a vocal tract transfer function $h(t)$

$$s(t) = h(t) * e(t)$$

- The Fourier transform of speech is therefore the product of excitation times transfer function:

$$S(f) = H(f)E(f)$$

...engineers usually compute Fourier transform using $\Omega = 2\pi f$ rather than f. You can get one from the other if you remember that $d\Omega = 2\pi \, df$.

- Excitation includes all of the information about voicing, frication, or burst. Transfer function includes all of the information about the vocal tract resonances, which are called “formants.”
The Source-Filter Model

Transfer Function $\log|H(f)|$

Voice Source Spectrum $\log|E(f)|$

Speech Spectrum $\log|S(f)| = \log|H(f)| + \log|E(f)|$
Source-Filter Model: Voice Source

• The most important thing about voiced excitation is that it is periodic, with a period called the "pitch period," \(T_0 \)

• It’s reasonable to model voiced excitation as a simple sequence of impulses, one impulse every \(T_0 \) seconds:

\[
e(t) = \sum_{m=-\infty}^{\infty} \delta(t - mT_0)
\]

• The Fourier transform of an impulse train is an impulse train (to prove this: use Fourier series):

\[
E(f) = \frac{1}{T_0} \sum_{k=-\infty}^{\infty} \delta(f - kF_0)
\]

...where \(F_0 = \frac{1}{T_0} \) is the pitch frequency. It’s the number of times per second that the vocal folds slap together.
Source-Filter Model: Filter

• The vocal tract is just a tube. At most frequencies, it just passes the excitation signal with no modification at all ($H(f) = 1$).

• The important exception: the vocal tract has resonances, like a clarinet or a shower stall. These resonances are called “formant frequencies,” numbered in order: $F_1 < F_2 < F_3 < \ldots$. Typically $0 < F_1 < 1000 < F_2 < 2000 < F_3 < 3000\text{Hz}$ and so on, but there are some exceptions.

• At the resonant frequencies, the resonance enhances the energy of the excitation, so the transfer function $H(f)$ is large at those frequencies, and small at other frequencies.
Speech signal: Time domain

Waveform, Utterance "kae"

\[T_1 = \frac{1}{F_1} = 2\text{ms} \]

\[T_0 = \frac{1}{F_0} = 8\text{ms} \]

/k/ burst

/k/ aspiration

voicing
Speech signal: Magnitude Fourier Transform

$F_1 = \text{freq of first peak} = 500\text{Hz}$

$F_0 = \text{spacing between adjacent pitch harmonics} = 125\text{Hz}$

$F_2 = \text{freq of second peak} = 1500\text{Hz}$

Aliasing artifacts:
Spectra at $F_s - f$ should really be plotted at $-f$ (negative frequency components). DFT puts it at $F_s - f$ instead.
Speech signal: Log Magnitude Transform

- $F_1 =$ freq of first peak = 500Hz
- $F_0 =$ spacing between harmonics = 125Hz
- $F_2 =$ freq of second peak = 1500Hz

Aliasing artifacts:
Spectra at $F_S - f$ should really be plotted at $-f$ (negative frequency components). DFT puts it at $F_S - f$ instead.
Part 2: Linguistic units
Scharenborg, 2017

• Speech signal

Linguistic units are:

• Phone(me)s

• Words
Linguistic units
Scharenborg, 2017

- Speech = sound
- Sound = differences in air pressure
- Air pressure waves perceived as different phone(me)s, phone(me) sequences, and (partial or multi) words
- Via eardrum, cochlea, and auditory nerve to brain
Some terminology
Scharenborg, 2017

• **Phoneme**: the smallest contrastive linguistic unit that distinguishes meaning, e.g.,
 \(tip \) vs. \(dip \)

• **Allophone**: a variation of a phoneme, eg., \(photon \) vs. \(spot \)

• **Phone**: a distinct speech sound

• **Word**: the smallest distinct unit that can be uttered in isolation which has meaning
Speech sounds
Scharenborg, 2017

• Vowels: unblocked air stream

• Consonants: constricted or blocked air stream
Different sounds: Vowels
Scharenborg, 2017

- **Tongue height:**
 - Low: e.g., /a/
 - Mid: e.g., /e/
 - High: e.g., /i/

- **Tongue advancement:**
 - Front: e.g., /i/
 - Central: e.g., /ə/
 - Back: e.g., /u/

- **Lip rounding:**
 - Unrounded: e.g., /ɪ, ɛ, e, ə/
 - Rounded: e.g., /u, o, ɔ/

- **Tense/lax:**
 - Tense: e.g., /i, e, u, o, ɔ, ɑ/
 - Lax: e.g., /ɨ, ɛ, æ, ə/

![Simple & Glided Vowels Diagram](image)
Different sounds: Vowels
Scharenborg, 2017

- Tongue height:
 - Low: e.g., /a/
 - Mid: e.g., /e/
 - High: e.g., /i/

- Tongue advancement:
 - Front: e.g., /i/
 - Central: e.g., /ə/
 - Back: e.g., /u/

- Lip rounding:
 - Unrounded: e.g., /ɪ, ɛ, ə, ǝ/
 - Rounded: e.g., /u, o, ɔ/

- Tense/lax:
 - Tense: e.g., /i, e, u, o, ɔ, ɑ/
 - Lax: e.g., /ɪ, ɛ, æ, ə/
Different sounds: Consonants

Scharenborg, 2017

• Place of articulation
 – Where is the constriction/blocking of the air stream?

• Manner of articulation
 – Stops: /p, t, k, b, d, g/
 – Fricatives: /f, s, ʃ, v, z, ʒ/
 – Affricates: /tʃ, dʒ/
 – Approximants/Liquids: /l, r, w, j/
 – Nasals: /m, n, ng/
Speech sound production
Scharenborg, 2017

- https://www.youtube.com/watch?v=DcNMCB-Gsn8

Recorded in 1962, Ken Stevens
Source: YouTube
Quiz 1: How many words are there?
Scharenborg, 2017

Each picture shows a waveform of a short stretch of speech:

A: Electromagnetically (1)
B: Emma loves her mum’s yellow marmelade (6)
C: See you in the evening (5)
D: Attachment (1)
Electromagnetically
Scharenborg, 2017

Why is it so hard to determine the number of words?

/silence ≠ word boundary/

/i l ektromægnet i l i/
Quiz 2: Can you spot the odd one out?
Scharenborg, 2017

• Below are three waveforms each containing a single word:

Every time you produce a word it sounds differently

A3 (brother, brother, mother)
Enormous variability

Scharenborg, 2017

- Speaker differences, e.g., gender, vocal tract length, age
- Speaker idiosyncracies, e.g., lisp, creaky voice
- Accent: dialects, non-nativeness
- Coarticulation: production of a speech sound becomes more like that of a preceding/following speech sound
- Speaking style → reductions
Time domain signal: Hard to tell what he was saying

\[s(t) = h(t) \ast e(t) \]
Magnitude spectrum: A little easier

\[S(f) = H(f)E(f) \]

Easier to measure formants → easier to guess what he’s saying.

Still easy to measure F0 → can still guess who he is.

(Formants≈phone-dependent, F0≈person-dependent, though there’s a lot of cross-talk)
Log magnitude spectrum: A lot easier

\[
\ln |S(f)| = \ln |H(f)| + \ln |E(f)|
\]

Easier to measure formants \(\rightarrow\) easier to guess what he’s saying.

Still easy to measure F0 \(\rightarrow\) can still guess who he is.

(\text{Formants} \approx \text{phone-dependent}, \quad \text{F0} \approx \text{person-dependent}, \quad \text{though there’s a lot of cross-talk})
Log spectrum = log filter + log excitation

\[\ln |S(f)| = \ln |H(f)| + \ln |E(f)| \]

• But how can we separate the speech spectrum into the transfer function part, and the excitation part?
• Bogert, Healy & Tukey:
 • Excitation is high “quefrency” (varies rapidly as a function of frequency)
 • Transfer function is low “quefrency” (varies slowly as a function of frequency)
Cepstrum = inverse FFT of the log spectrum
(Bogert, Healy & Tukey, 1962)

\[\hat{s}[q] = IFFT(\ln |S(f)|) \]

- \(q \) = quefrency. It has units of time.
- IFFT is linear, so since
 \[\hat{s}[q] = \hat{h}[q] + \hat{e}[q] \]
 ...the transfer function and excitation are added together. All we need to do is separate two added signals.
- Transfer function and Excitation are separated into low-quefrency (0 < \(q \) < 2 ms) and high-quefrency (\(q \) > 2 ms) parts.
Lifting = \text{filter(spectrum)} = \text{window(cepstrum)}
(Bogert, Healy & Tukey, 1962)

Transfer function and Excitation are separated into low-quefrency \((0 < q < 2\text{ms})\) and high-quefrency \((q > 2\text{ms})\) parts. So we can recover them by just windowing:

\[
\hat{h}[q] \approx w[q]\hat{s}[q]
\]
\[
\hat{e}[q] \approx (1 - w[q])\hat{s}[q]
\]
\[
w[q] = \begin{cases}
1 & 0 < q < 2\text{ms} \\
0 & q > 2\text{ms}
\end{cases}
\]
Liftering = filter(spectrum) = window(cepstrum)
(Bogert, Healy & Tukey, 1962)

Then we estimate the transfer function and excitation spectrum using the FFT:

\[\ln |H(f)| \approx FFT(\hat{h}[q]) \]

\[\ln |E(f)| \approx FFT(\hat{e}[q]) \]
Inverse Discrete Cosine Transform

• Log magnitude spectrum is symmetric: $\ln |S(f)| = \ln |S(-f)|$.
• In the IFFT definition, the real part is symmetric, and the imaginary part is antisymmetric. Suppose we define $S_k = \ln \left| S \left(\frac{kF_s}{N} \right) \right|$, then the definition of IFFT is

$$\hat{s}[q] = \text{IFFT} (\ln |S(f)|) = \frac{1}{N} \sum_{k=0}^{N-1} S_k e^{j\frac{2\pi k q}{N}}$$

...but since S_k is real, $S_{N-k} = S_k$ so

$$\hat{s}[q] = \frac{S_0 - (-1)^q S_M}{2M} + \frac{1}{M} \sum_{k=1}^{M-1} S_k \cos \left(\frac{\pi k q}{M} \right)$$

This is called the “inverse discrete cosine transform” or IDCT. It’s half of the real symmetric IFFT of a real symmetric signal. (note $M=N/2$).
Type I DCT, IDCT, and Parseval’s Theorem

\[S_k = \frac{\hat{s}[0] - (-1)^k \hat{s}[M]}{2} + \sum_{q=1}^{M-1} \hat{s}[q] \cos \left(\frac{\pi k q}{M} \right) \]

\[\hat{s}[q] = \frac{S_0 - (-1)^q S_M}{2M} + \frac{1}{M} \sum_{k=1}^{M-1} S_k \cos \left(\frac{\pi k q}{M} \right) \]

\[\hat{s}[0]^2 + \hat{s}[M]^2 + 2 \sum_{q=1}^{M-1} \hat{s}[q]^2 = \frac{1}{2M} \left(S_0^2 + S_M^2 + 2 \sum_{k=1}^{M-1} S_k^2 \right) \]
Type II Discrete Cosine Transform

• Suppose we define $C_k = \ln \left| S \left(\frac{(k+0.5)F_s}{N} \right) \right|$, and $c[n] = M\hat{S}[n]$. Then

$$c[n] = \frac{N}{2} \text{IFFT}(\ln |S(f)|) = \frac{1}{2} \sum_{k=0}^{N-1} C_k e^{j\frac{2\pi(k+0.5)n}{N}}$$

...but now $S_{N-1-k} = S_k$ so

$$c[n] = \sum_{k=0}^{M-1} C_k \cos \left(\frac{\pi(k + 0.5)n}{M} \right)$$

This is called the “Type II DCT,” and it’s a lot more common than the Type I DCT because it eliminates the special handling of the $k=0$ and $k=M$ terms.
Type II DCT, IDCT, and Parseval’s Theorem

\[c[n] = \sum_{k=0}^{M-1} C_k \cos \left(\frac{\pi(k + 0.5)n}{M} \right) \]

\[C_k = \frac{1}{M} \sum_{k=1}^{M-1} c[n] \cos \left(\frac{\pi(k + 0.5)n}{M} \right) \]

\[\frac{1}{M} \left(c[0]^2 + 2 \sum_{n=1}^{M-1} c[n]^2 \right) = \sum_{k=0}^{M-1} C_k^2 \]
Details about type II DCT

• It was defined as $C_k = \ln \left| S \left(\frac{(k+0.5)F_s}{N} \right) \right|$, but in practice we usually just use the FFT coefficients, $C_k \approx \ln \left| S \left(\frac{kF_s}{N} \right) \right|$. This approximation has no real impact on automatic speech recognition, but it might have some impact on pitch tracking – if you’re trying to find out exactly what is the pitch frequency, then shifting by $\frac{F_s}{2N}$ might matter.

• The DCT and IDCT formulas are now easy, but Parseval’s theorem still has a funny extra term for $c[0]$. But it doesn’t matter because...

• Remember $c[0] = \sum_{k=0}^{M-1} C_k$ is the average log magnitude of the spectrum, i.e., a measure of the loudness. Loudness can be increased by just turning up the volume on the microphone, so we probably want to treat $c[0]$ differently from all of the other $c[n]$.
Discrete Cosine Transform = Half of the real symmetric IFFT of a real symmetric signal
Lifter = window the IFFT (left) or DCT (right) cepstrum
Both kinds of liftering give the same transfer function and excitation estimates
Spectrogram: \(\ln(\text{energy}(\text{frequency}, \text{time})) \)

Scharenborg, 2017

Spectrum lets you measure formants, so it gives some information about vowels. Timing is important to know about consonants.

Spectrogram = time on the horizontal axis, frequency on vertical axis.
Summary

• Source-filter model: \(S(f) = H(f)E(f) \)
 - Voiced excitation is an impulse train in time (with period = the pitch period \(T_0 \)), whose Fourier transform is an impulse train in frequency (with inter-harmonic spacing equal to the pitch frequency \(F_0 \))
 - Transfer function is nearly \(H(f) = 1 \) at most frequencies, but with big peaks near the resonant frequencies, which are called formants

• Phones, phonemes, and allophones

• Estimating the transfer function and excitation
 - \(\ln |S(f)| = \ln |H(f)| + \ln |E(f)| \)
 - The transfer function is low-quefrency, excitation is high-quefrency
 - Cepstrum = \(IFFT(\ln |S(f)|) = DCT(\ln |S(f)|) \)
 - Liftering = windowing the cepstrum
 - DCT = half of the real symmetric IFFT of a real symmetric signal