ECE 417, Lecture 10: Speech Perception

Mark Hasegawa-Johnson

10/3/2017
Content

- Parseval’s Theorem: Cepstral Distance = Spectral Distance
- What spectrum do people hear? The basilar membrane
- Frequency scales for hearing: mel, ERB
- Filterbank coefficients and MFCC
Parseval’s Theorem

L2 norm of a signal equals the L2 norm of its Fourier transform.
Parseval’s Theorem: Examples

- Fourier Series:
 \[\frac{1}{T} \int_0^T |x(t)|^2 dt = \sum_{k=-\infty}^{\infty} |X_k|^2 \]

- DTFT:
 \[\sum_{n=-\infty}^{\infty} |x[n]|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |X(\omega)|^2 d\omega \]

- DFT:
 \[\sum_{n=0}^{N-1} |x[n]|^2 = \frac{1}{N} \sum_{k=0}^{N-1} |X[k]|^2 \]
Parseval’s Theorem: DCT

\[\frac{1}{M} \left(c[0]^2 + 2 \sum_{n=1}^{M-1} c[n]^2 \right) = \sum_{k=0}^{M-1} C_k^2 \]

Where you remember that

\[C_k = \ln \left| S \left(\frac{(k + 0.5)F_S}{N} \right) \right| \]
Parseval’s Theorem: Vector Formulation

Suppose we define the vectors \vec{c} and \vec{C} as the cepstrum and the log spectrum, thus

$$\vec{c} = \begin{bmatrix} c_0 \\ \vdots \\ c_{M-1} \end{bmatrix}, \quad \vec{C} = \begin{bmatrix} C_0 \\ \vdots \\ C_{M-1} \end{bmatrix}$$

Where for convenience we’ll say

$$c_n = \begin{cases} \frac{c[0]}{\sqrt{M}} & n = 0 \\ \frac{c[n]}{\sqrt{M/2}} & 1 \leq n \leq M - 1 \end{cases}$$
Parseval’s Theorem: Vector Formulation

That way Parseval’s theorem can be written very simply as

\[\sum_{n=0}^{M-1} c_n^2 = \sum_{k=0}^{M-1} C_k^2 \]

...or even more simply as...

\[\|\vec{c}\|^2 = \|\vec{C}\|^2 \]

i.e., the L2 norm of the cepstrum equals the L2 norm of the log spectrum.
What it means for KNN

Suppose we have two acoustic signals $x(t)$ and $y(t)$, and we want to find out how different they sound. If they have static spectra, then a good measure of their difference is the L2 difference between their log spectra:

$$D = \sum_{k=0}^{M-1} \left(\ln \left| X \left(\frac{(k + 0.5)F_s}{N} \right) \right| - \ln \left| Y \left(\frac{(k + 0.5)F_s}{N} \right) \right| \right)^2$$

$$= \sum_{k=0}^{M-1} (X_k - Y_k)^2 = \sum_{n=0}^{M-1} (x_n - y_n)^2 = \| \hat{x} - \hat{y} \|^2 = \| \hat{X} - \hat{Y} \|^2$$
Low-pass liftering smooths the spectrum
Low-pass liftered L2 norm

If you want to know whether two signals are the same vowel, then you want to know how different their smoothed spectra are. Let $H(k)$ be your smoothing function. You smooth the log spectrum, then find the L2 distance:

$$\sum_{k=0}^{M} \left(H(k) \ast \ln \left| X \left(\frac{(k + 0.5)F_s}{N} \right) \right| - H(k) \ast \ln \left| Y \left(\frac{(k + 0.5)F_s}{N} \right) \right| \right)^2$$

$$= \sum_{k=0}^{M-1} (H(k) \ast X_k - H(k) \ast Y_k)^2 = \sum_{n=0}^{M-1} h^2[n] (x_n - y_n)^2$$
Low-pass liftered L2 norm

In particular, suppose

\[h[n] = \begin{cases}
1 & 0 < n \leq 15 \\
0 & n > 15
\end{cases} \]

Then

\[
\sum_{k=0}^{M} \left(H(k) \ast \ln \left| X \left(\frac{(k + 0.5)F_s}{N} \right) \right| - H(k) \ast \ln \left| Y \left(\frac{(k + 0.5)F_s}{N} \right) \right| \right)^2 \\
= \sum_{n=1}^{15} (x_n - y_n)^2
\]
What spectrum do people hear? Basilar membrane
Inner ear

The Internal Ear

- Semicircular ducts
 - Anterior
 - Lateral
 - Posterior

- Vestibular duct
- Cochlear duct

- Cristae within ampullae
- Utricle
- Saccule
- Vestibulocochlear nerve
- Tympanic duct

- Bony labyrinth
- Membranous labyrinth

Cochlea
Basilar membrane of the cochlea = a bank of mechanical bandpass filters
Frequency scales for hearing: mel scale, ERB scale
Mel-scale

- The experiment:
 - Play tones A, B, C
 - Let the user adjust tone D until \(\text{pitch(D)} - \text{pitch(C)} \) sounds the same as \(\text{pitch(B)} - \text{pitch(A)} \)

- Analysis: create a frequency scale \(m(f) \) such that \(m(D) - m(C) = m(B) - m(A) \)

- Result:
 \[
 m(f) = \frac{1}{2595} \log_{10} \left(1 + \frac{f}{700} \right)
 \]
Critical bands

• When two tones play at exactly the same frequency, users can’t tell the difference between \(x(t) \) versus \(x(t) + y(t) \) if \(y(t) \) is about 14dB below \(x(t) \) (in other words, the summed power is 1.03 times the power of \(x(t) \) alone)

• When \(x(t) \) and \(y(t) \) are at different frequencies, the masking power of \(x(t) \) is reduced

• Model: assume that the reduced masking power of \(x(t) \) is caused because \(x(t) \) is coming in through the tails of the bandpass filter centered at \(y(t) \).
ERB scale

• The experiment: find out the widths, B(f), of the critical-band filters centered at every frequency f.

• Analysis: create a scale e(f) such that e(f+0.5B(f)) – e(f-0.5B(f)) = 1, for all frequencies

• Result: e(f) = 21.4 \log_{10}(1 + 0.00437f)
MFCC
Mel filterbank coefficients: convert the spectrum from Hertz-frequency to mel-frequency

• Goal: instead of computing

\[C_k = \ln \left| S \left(\frac{(k+0.5)F_s}{N} \right) \right| \]

We want

\[C_k = \ln |S(f_k)| \]

Where the frequencies \(f_k \) are uniformly spaced on a mel-scale, i.e., \(m(f_{k+1}) - m(f_k) \) is a constant across all \(k \).

The problem with that idea: we don’t want to just sample the spectrum. We want to summarize everything that’s happening within a frequency band.
Mel filterbank coefficients: convert the spectrum from Hertz-frequency to mel-frequency

The solution:

\[C_m = \ln \sum_{k=0}^{N-1} W_m(k) \left| S \left(\frac{kF_s}{N} \right) \right| \]

Where

\[
W_m(k) = \begin{cases}
\frac{kF_s}{N} - f_{m-1} & f_m \geq \frac{kF_s}{N} \geq f_{m-1} \\
\frac{f_m - f_{m-1}}{f_{m+1} - f_m} & f_{m+1} \geq \frac{kF_s}{N} \geq f_m \\
0 & \text{otherwise}
\end{cases}
\]
Mel filterbank coefficients: convert the spectrum from Hertz-frequency to mel-frequency

(a) The full filterbank
(b) Example power spectrum of an audio frame
(c) Filter 8 from filterbank
(d) Windowed power spectrum using filter 8
(e) Filter 20 from filterbank
(f) Windowed power spectrum using filter 20
MFCC: the full process

• Divide the acoustic signal into frames
• Compute the magnitude FFT of each frame
• Filterbank coefficients: \(C_m = \ln \sum_{k=0}^{N-1} W_m(k) \left| S \left(\frac{kF_s}{N} \right) \right| \)
• MFCC: \(c[n] = \sum_{m=0}^{M-1} C_m \cos \left(\frac{\pi (m+0.5)n}{M} \right) \)
• Liftering: keep only the first 12-15 MFCC coefficients, set the rest to zero.
Summary

- L2 distance(cepstra) = L2 distance(log magnitude spectra)
- L2 distance(windowed cepstrum) = L2 distance(smoothed log magnitude spectrum)