UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
 Department of Electrical and Computer Engineering

ECE 498MH Signal and Image Analysis

Homework 7

Fall 2014

Assigned: Thursday, 3/28/2017
Due: Thursday, 3/28/2017

Reading: 194-230

Problem 7.1

A periodic continuous-time signal has the Fourier series

$$
x(t)=\sum_{k=-\infty}^{\infty} X_{k} e^{j 2 \pi k t / T_{0}}
$$

Suppose that $T_{0}=0.01 \mathrm{~s}$. Suppose that $x(t)$ is lowpass filtered by an ideal anti-aliasing filter with a cutoff of 5 kHz , then sampled at $F_{s}=10 \mathrm{kHz}$ to create $x[n] . x[n]$ is then passed through a 50 -sample averager to create $y[n]$:

$$
y[n]=\frac{1}{50} \sum_{m=0}^{49} x[n-m]
$$

The signal $y[n]$ is sent through an ideal D / A with the same sampling frequency, $F_{s}=10 \mathrm{kHz}$, to create the signal $y(t)$, which can be written as

$$
x(t)=\sum_{k=-\infty}^{\infty} Y_{k} e^{j 2 \pi k t / T_{0}}
$$

(a) $Y_{k}=0$ for $|k| \geq 50$ because of the anti-aliasing filter, and for $k=2 \ell$ because of the discrete-time averaging.
(b) The frequency of the first null is $\omega_{c}=2 \pi / 50$ radians/second. In Hertz, this is

$$
\left[\frac{2 \pi}{50} \frac{\text { radians }}{\text { sample }}\right] \times\left[10,000 \frac{\text { samples }}{\text { second }}\right] \times\left[\frac{1}{2 \pi} \frac{\text { cycles }}{\text { radian }}\right]=200 \frac{\text { cycles }}{\text { second }}
$$

(c)

$$
\left|Y_{k}\right|= \begin{cases}\left|X_{k}\right| & k=0 \\ 0 & |k| \geq 50 \\ 0 & k=2 \ell, \text { integer } \ell \\ \left|\frac{\sin (\pi k / 2)}{50 \sin (\pi k / 50)} X_{k}\right| & \text { otherwise }\end{cases}
$$

Problem 7.2

A periodic continuous-time signal has the Fourier series

$$
x(t)=\sum_{k=-\infty}^{\infty} X_{k} e^{j 2 \pi k t / T_{0}}
$$

Suppose that $T_{0}=0.01 \mathrm{~s}$. Suppose that $x(t)$ is lowpass filtered by an ideal anti-aliasing filter with a cutoff of 4 kHz , then sampled at $F_{s}=8 \mathrm{kHz}$ to create $x[n] . x[n]$ is then passed through a 40 -sample averager to create $y[n]$:

$$
y[n]=\frac{1}{40} \sum_{m=0}^{39} x[n-m]
$$

The signal $y[n]$ is sent through an ideal D / A with the same sampling frequency, $F_{s}=8 \mathrm{kHz}$, to create the signal $y(t)$, which can be written as

$$
x(t)=\sum_{k=-\infty}^{\infty} Y_{k} e^{j 2 \pi k t / T_{0}}
$$

(a) $Y_{k}=0$ for $|k| \geq 40$ because of the anti-aliasing filter, and for $k=2 \ell$ because of the discrete-time averaging.
(b) The frequency of the first null is $\omega_{c}=2 \pi / 40$ radians/second. In Hertz, this is

$$
\left[\frac{2 \pi}{40} \frac{\text { radians }}{\text { sample }}\right] \times\left[8000 \frac{\text { samples }}{\text { second }}\right] \times\left[\frac{1}{2 \pi} \frac{\text { cycles }}{\text { radian }}\right]=200 \frac{\text { cycles }}{\text { second }}
$$

(c)

$$
\left|Y_{k}\right|= \begin{cases}\left|X_{k}\right| & k=0 \\ 0 & |k| \geq 40 \\ 0 & k=2 \ell, \text { integer } \ell \\ \left|\frac{\sin (\pi k / 2)}{40 \sin (\pi k / 40)} X_{k}\right| & \text { otherwise }\end{cases}
$$

