UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
 Department of Electrical and Computer Engineering

ECE 498MH Signal and Image Analysis

Homework 6

Fall 2014

Assigned: Thursday, 3/14/2017
Due: Thursday, 3/14/2017

Reading: 1-40

Problem 6.1

(a) Yes, it is linear. If you add two inputs, the result is the same thing you'd get by adding the outputs.

$$
\begin{aligned}
a y_{1}[n]+b y_{2}[n] & =a \cos (\alpha n) x_{1}[2 n]+b \cos (\alpha n) x_{2}[2 n] \\
y_{3}[n] & =\cos (\alpha n) x_{3}[2 n] \\
& =\cos (\alpha n)\left(a x_{1}[2 n]+b x_{2}[2 n]\right)
\end{aligned}
$$

These are the same thing, so the system is linear.
(b) No, it's not time-invariant. Delaying the input changes which samples are chosen by the $2 n$ operator, and also changes the cosine-multiplier for each sample.

$$
\begin{aligned}
y_{1}[n-m] & =\cos (\alpha(n-m)) x_{1}[2(n-m)] \\
y_{2}[n] & =\cos (\alpha n) x_{2}[2 n] \\
& =\cos (\alpha n) x_{1}[2 n-m]
\end{aligned}
$$

Problem 6.2

(a) No, it's not linear. If you add two outputs, then the constant term gets added twice; if you add the inputs and then put it through the system, the constant term shows up only once.

$$
\begin{aligned}
a y_{1}[n]+b y_{2}[n] & =a\left(x_{1}[n]+127\right)+b\left(x_{2}[n]+127\right) \\
y_{3}[n] & =x_{3}[n]+127 \\
& =\left(a x_{1}[n]+b x_{2}[n]\right)+127
\end{aligned}
$$

(b) Yes, it's time-invariant. Shifting the constant term, in time, doesn't change its value.

$$
\begin{aligned}
y_{1}[n-m] & =x_{1}[n-m]+127 \\
y_{2}[n] & =x_{2}[n]+127 \\
& =x_{1}[n-m]+127
\end{aligned}
$$

